www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - Ableitung
Ableitung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 So 24.10.2010
Autor: Igor1

Aufgabe
Berechnen Sie die Ableitung der Funktion F(x)= [mm] \integral_{-x^{2}}^{x^{3}}{e^{t^{2}} dt}, x\in [/mm] [0,1].

Hallo,

ich habe mit folgendem Ansatz probiert:

F(x)= [mm] \integral_{-x^{2}}^{x^{3}}{e^{t^{2}} dt}=\integral_{-x^{2}}^{0}{e^{t^{2}} dt}+\integral_{0}^{x^{3}}{e^{t^{2}} dt}= [/mm]
[mm] =\integral_{0}^{x^{3}}{e^{t^{2}} dt}-\integral_{0}^{-x^{2}}{e^{t^{2}} dt}. [/mm]

Die Ableitung von der Summe ist gleich der Summe der Ableitungen.
Die Ableitung vom ersten Summanden (nenne man es G) ist f ( da G'=f)
Die Ableitung vom zweiten Summanden ist auch f.
Insgesamt, mit der Differenz, kommt 0 raus.

Ist das richtig, oder ist etwas unstimmig?

Gruß
Igor

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 So 24.10.2010
Autor: wauwau

na ja da hast du die innere Ableitung unterschlagen:

Setze mal
[mm] $G(x)=\integral_{0}^{x}{e^{t^2} dt}$ [/mm]
dann weißt du ja, dass
$G'(x) = [mm] e^{x^2}$ [/mm] ist
dein
$F(x) = [mm] G(x^3)-G(-x^2)$ [/mm]
also
[mm] $\frac{d\integral_{0}^{x^3}{e^{t^2} dt}}{dx} [/mm] = [mm] G'(x^3)3x^2= 3x^2e^{x^6}$ [/mm]

[mm] $\frac{d\integral_{0}^{-x^2}{e^{t^2} dt}}{dx} [/mm] = [mm] -G'(-x^2)2x= -2xe^{-x^4}$ [/mm]

also insgesamt

$F'(x) = [mm] 3x^2e^{x^6}+2xe^{-x^4}$ [/mm]


Bezug
                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 So 24.10.2010
Autor: wauwau

schau mal meine nun ausgerechnete Version der Antwort an

Bezug
        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 So 24.10.2010
Autor: Marcel

Hallo Igor,

> Berechnen Sie die Ableitung der Funktion F(x)=
> [mm]\integral_{-x^{2}}^{x^{3}}{e^{t^{2}} dt}, x\in[/mm] [0,1].
>  Hallo,
>  
> ich habe mit folgendem Ansatz probiert:
>  
> F(x)= [mm]\integral_{-x^{2}}^{x^{3}}{e^{t^{2}} dt}=\integral_{-x^{2}}^{0}{e^{t^{2}} dt}+\integral_{0}^{x^{3}}{e^{t^{2}} dt}=[/mm]
>  
> [mm]=\integral_{0}^{x^{3}}{e^{t^{2}} dt}-\integral_{0}^{-x^{2}}{e^{t^{2}} dt}.[/mm]
>  
> Die Ableitung von der Summe ist gleich der Summe der
> Ableitungen.
>  Die Ableitung vom ersten Summanden (nenne man es G) ist f
> ( da G'=f)
>  Die Ableitung vom zweiten Summanden ist auch f.
>  Insgesamt, mit der Differenz, kommt 0 raus.
>  
> Ist das richtig, oder ist etwas unstimmig?

da ist mMn (=meiner Meinung nach) etwas unstimmig:
Es gilt für (bspw.) [mm] $F(x):=\int_0^x f(t)dt\,,$ [/mm] dass
[mm] $$F'(a)=\lim_{x \to 0}\left(\int_a^x f(t)dt/x\right)=f(a)\,,$$ [/mm]
wenn [mm] $f\,$ [/mm] (bspw.) stetig ist.

Um [mm] $\lim_{x \to 0}(F(x^3)-F(x^2))/x$ [/mm] zu berechnen solltest Du dann beachten,  dass [mm] $F(x^j)$ [/mm] für eine Verknüpfung $(F [mm] \circ g_j)(x)$ [/mm] (genauer: Verknüpfung ausgewertet an der Stelle [mm] $x\,$) [/mm] mit [mm] $g_j(x)=x^j$ [/mm] ($j=1,2$) steht. Bzw. Du kannst (für $x [mm] \ge [/mm] 0$) auch schreiben
[mm] $$\int_0^{x^j}f(t)dt=\int_0^{x}f(t^j)dt\,.$$ [/mm]

Damit sollte das ganze dann sauber durchzurechnen sein.

P.S.:
Für $x [mm] \le [/mm] 0$ und ungerade [mm] $j\,$ [/mm] ist
[mm] $$\int_{x^j}^0 f(t)dt=-\int_0^{-x^j}f(t)dt\,.$$ [/mm]

Beste Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]