www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Ableitung
Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Do 20.09.2012
Autor: mbau16

Aufgabe
Keine Aufgabenstellung!

Guten Tag zusammen,

versuche mich gerade an einer Euler- Gleichung zur Berechnung einer Strömung. Darum geht es hier aber nicht. Ich habe ein mathematisches Problem.

Ableitung von [mm] c_{x} [/mm] nach t:

[mm] \bruch{\partial \left(c_{0}-\bruch{c_{0}}{t_{s}}*t\right)}{\partial t}=-\bruch{c_{0}}{t_{s}} [/mm]

Eigentlich denke ich, dass ich ableiten kann. Auch wenn es schon wieder etwas her ist. Allerdings verunsichert mich die Schreibweise und ich komme nicht drauf, wie hier abgeleitet wird!

Ich würde mich über etwas Input sehr freuen!

Vielen, vielen Dank!

Gruß

mbau16

        
Bezug
Ableitung: Partielle Ableitungen
Status: (Antwort) fertig Status 
Datum: 12:40 Do 20.09.2012
Autor: Helbig

Hallo mbau16,

>  
> Ableitung von [mm]c_{x}[/mm] nach t:
>  
> [mm]\bruch{\partial \left(c_{0}-\bruch{c_{0}}{t_{s}}*t\right)}{\partial t}=-\bruch{c_{0}}{t_{s}}[/mm]
>  

Dies ist eine sog. partielle Ableitung nach $t$, also die gewöhnliche Ableitung der Funktion [mm] $t\mapsto c_{0}-\bruch{c_{0}}{t_{s}}*t$, [/mm] d. h. [mm] $c_0$ [/mm] und [mm] $t_s$ [/mm] sind hier als konstant zu behandeln.

OK?

Gruß,
Wolfgang

Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Do 20.09.2012
Autor: mbau16

Guten Tag nochmal,

nachdem mir Wolfgang gerade schon weitergeholfen hat, habe ich jetzt die Frage, ob mir jemand in einfachen Worten erklären kann, wo der Unterschied zwischen einer impliziten und einer expliziten partiellen Ableitung liegt.

Habe ich es recht verstanden, dass wenn wie in meinem Fall [mm] c_{x} [/mm] direkt von der Zeit abhängt, der Ausdruck explizit ist.

Falls wie in der Euler- Gleichung der Fall sein kann, mein Ausdruck auch von den Ortskoordinaten abhängt ist mein Ausdruck als implizit zu bezeichnen.

Diese ist dann mit der mehrdimensionalen Kettenregel zu bearbeiten!

Hier wird dann also [mm] c_{0}-\bruch{c_{0}}{t_{s}} [/mm] konstant gehalten und die Ableitung ist dann [mm] -\bruch{c_{0}}{t_{s}}! [/mm]

Es ist noch zu erwähnen dass:

[mm] c_{x}(t)=c_{0}-\bruch{c_{0}}{t_{s}}*t [/mm]

ist. Das habe ich gerade vergessen.

> Hallo mbau16,
>  
> >  

> > Ableitung von [mm]c_{x}[/mm] nach t:

[mm]\bruch{\partial \left(c_{0}-\bruch{c_{0}}{t_{s}}*t\right)}{\partial t}=-\bruch{c_{0}}{t_{s}}[/mm]

>  

> Dies ist eine sog. partielle Ableitung nach [mm]t[/mm], also die
> gewöhnliche Ableitung der Funktion [mm]t\mapsto c_{0}-\bruch{c_{0}}{t_{s}}*t[/mm], d. h. [mm]c_0[/mm] und [mm]t_s[/mm] sind hier als konstant zu behandeln.

Ist es so richtig, wie ich es oben erklärt habe. Vielleicht habt Ihr einen Rat!

Vielen, vielen Dank!


Gruß

mbau16




Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Do 20.09.2012
Autor: leduart

Hallo
eigentlich hast du hier, da ja [mm] c_0 [/mm] und t:s keine Variablen sind einfach eine Funktion c(t), die du nach t ableitest.in dem Sinne also keine partielle Ableitung.
wenn du eine implizite Darstellung hasst, wie etwa
[mm] (x(t)^2+c*t=const [/mm] hast du die implizite Ableitung
[mm] 2x(t)*\partiax/\partial [/mm] t+c=0 und kannst daraus [mm] \partiax/\partial [/mm] t bestimmen.
ich hoffe, dass du das meintest.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]