www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung Exponentialfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Ableitung Exponentialfunktion
Ableitung Exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung Exponentialfunktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:05 So 07.12.2008
Autor: yuppi

Aufgabe
Leiten Sie f zweimal ab

Kann man hier sein Blatt scannen,wo meine ganzen Ableitungen sind oder ist es nicht möglich?

Hallo Zusammen, ich bin schon das ganze Wochenende Mathe am lernen.
Ich habe nun ein paar Fragen zur Ableitung von exponential Funktionen


f(x)=4*e^2x + 5

f`(x)=8e^2x*5+4e^2x
      =(5) 8e^2x*4e^2x
f´(x) =(5)32e^2x

Ja, also bin mir nichts sicher,ob das so richtig ist

f"(x)=(2)*32e^2x+(5)*32e^2x
       = (10)*32e^2x

Würde mich auf ein Kommentar und Korrektur freuen.

        
Bezug
Ableitung Exponentialfunktion: Funktion?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 So 07.12.2008
Autor: Loddar

Hallo yuppi!


Ja, man könnte hier auch ein eingescanntes Blatt hochladen. Aber das macht sich zum Korrigieren für uns nicht so gut.


Welche Funktion meinst Du denn hier:
[mm] $$f_1(x) [/mm] \ = \ [mm] 4*e^{2x}+5$$ [/mm]
oder
[mm] $$f_2(x) [/mm] \ = \ [mm] 4*e^{2x+5}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Ableitung Exponentialfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:24 So 07.12.2008
Autor: yuppi

Hi
Ich meine die Erste  also + 5 gehört nicht dem Exponenten an


Bezug
        
Bezug
Ableitung Exponentialfunktion: +5 entfällt
Status: (Antwort) fertig Status 
Datum: 15:26 So 07.12.2008
Autor: Loddar

Hallo yuppi!


Wenn die +5 nicht zum Exponenten gehört, entfällt dieser konstante Summand beim ableiten.

Es wird also:
$$f'(x) \ = \ [mm] 4*e^{2x}*2+0 [/mm] \ = \ [mm] 8*e^{2x}$$ [/mm]
Nun Du mit der 2. Ableitung ...


Gruß
Loddar


Bezug
                
Bezug
Ableitung Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 So 07.12.2008
Autor: yuppi

Ich kann die Ableitung nicht nachvollziehen.
Weil man muss doch hier nach der Produktregel vorangehen oder?

u´(X) = 4*2e^2x
u(x) =    4e^2x
v´(c)=0
v`(x)= 5

f`(x) = 4*2e^2x*0 + 4e^2x*5

Wie man zusammenfasst,weiß ich nich genau. Aber so geht das doch oder ?


Bezug
                        
Bezug
Ableitung Exponentialfunktion: warum Produktregel?
Status: (Antwort) fertig Status 
Datum: 16:04 So 07.12.2008
Autor: Loddar

Hallo yuppi!


Du hast hier lediglich ein Produkt aus einem konstanten Faktor sowie [mm] $e^{2x}$ [/mm] vorliegen. Beim Ableiten bleibt dieser konstante Faktor erhalten, so dass Du Dich nur noch um [mm] $e^{2x}$ [/mm] kümmern musst.


Gruß
Loddar


Bezug
                                
Bezug
Ableitung Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:13 So 07.12.2008
Autor: yuppi

Asoooooooo danke loddar ;)

Ich hab wohl das mal Zeichen mit einem Plus oder Minus verwechselt ^^

Die zweite Ableitung lautet : F"(X)= 2*8e^2x
                                                      = 16e^2x

Danke im  Vorraus


Bezug
                                        
Bezug
Ableitung Exponentialfunktion: richtig
Status: (Antwort) fertig Status 
Datum: 16:14 So 07.12.2008
Autor: Loddar

Hallo yuppi!


[ok]


Gruß
Loddar


Bezug
                                                
Bezug
Ableitung Exponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 So 07.12.2008
Autor: yuppi

Hallo


Wieso muss ich hier Produktregel anwenden:  f(X)= [mm] 2X*e^x [/mm]
Und hier nicht                                                    f(x)=4e^2x+5

Die Plus 5 gehört auch den Exponenten an.

Weil es ist ja kein Plus dazwischen.



Bezug
                                                        
Bezug
Ableitung Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 So 07.12.2008
Autor: leduart

Hallo
1. wenn in einem Exponenten mehr als ein Zeichen steht, musst du geschweifte Klammern drum machen.
1. f(x)=x*f(x)   da hast du das Produkt von 2 fkt. nur die eine ist eben einfach g(x)=x
bei [mm] f(x)=4*e^{x+5} [/mm] hast du eine Konstante vor der efkt. die bleibt einfach stehen.
(man kann auch die Produktregel anwenden, aber da ne Zahl abgeleitet 0 ergibt, fällt der Teil mit der ableitung der Konstanten weg.
allerdings steht hie im Exponenten auch ne Funktion, man hat
[mm] e^{g(x)} [/mm]  mit g(x)=x+5 da muss man eigentlich die Kettenregel anwenden. aber weil g'(x)=1 ist merkt man das nicht.
ausserdem kannst du [mm] e^{x+5} =e^x*e^5 [/mm] schreiben und dann ist [mm] e^5 [/mm] ja wieder nur ne Zahl.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]