Ableitung bilden < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Also, ich habe ein Problem (wie wahrscheinlich viele, die in diesem Forum posten) naja, auf jeden Fall sollen wir als Hausaufgabe beweisen, dass gilt:
[mm] \integral_{}^{} {a^x dx} [/mm] = [mm] a^x [/mm] / lna
ich habe mir gedacht, dass man ja dann auch die Ableitung von [mm] a^x [/mm] / lna bilden kann und dann [mm] a^x [/mm] erhalten müsste. Das habe ich auch versucht, irgendwie klappt es aber nicht. *gg* Wenn jm hier also Mitleid mit mir hat und vielleicht auch kurz Zeit, wäre es super, wenn mir da jm helfen könnte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hey, entschuldigt, natürlich ist es nicht sehr höflich, euch ohne jede Begrüßung gleich mit ner Frage zu überfallen. Und dass, obwohl mir die Führung dieses Forums wirklich gut gefällt, es wirkt alles sehr professionell.
Vielen Dank auch dir, Loddar, für den Tipp. Ich muss allerdings gestehen, dass ich die Aufgabe trotzdem nicht rausbekomme. Ich hab also die Ableitung gebildet und das dann mit der Quotientenregel und der Kettenregel, also, das mit der Substitution, weiter bearbeitet. ich bin jetzt so weit (wenns denn überhaupt stimmt)
[mm] \bruch{e^{lna*x} * (ln(a))^{2} - e^{lna*x} * ln (a)}{(ln(a))^{2}}
[/mm]
Also, mal angenommen, es wäre ungleublicherweise soweit richtig, was müsste ich denn jetzt machen? [mm] e^{lna*x} [/mm] ausklammern vielleicht? Aber dann komm ich auch nicht weiter :-(
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:33 Sa 12.03.2005 | Autor: | Loddar |
Hallo camonchen!
> Und dass, obwohl mir die Führung dieses Forums
> wirklich gut gefällt, es wirkt alles sehr professionell.
Danke, danke ...
> [mm]\bruch{e^{lna*x} * (ln(a))^{2} - e^{lna*x} * ln (a)}{(ln(a))^{2}}[/mm]
Wie Du schon selber angedeutet hast, stimmt diese Ableitung nicht (ich nehme mal an, Du wolltest [mm] $\bruch{a^x}{\ln(a)}$ [/mm] ableiten).
Der Fehler, denn Du machst ist folgender:
Da unsere Basis $a$ konstant ist, gilt das natürlich auch für [mm] $\ln(a)$ [/mm] !!
Wenn Du also die Ableitung bildest, behandle den Ausdruck [mm] $\ln(a)$ [/mm] wie eine konstante Zahl.
Das heißt auch, Du brauchst für die Ableitung nicht diese umständliche Quotientenregel benutzen.
Wenn Du aber unbedingt mit der Quotientenregel arbeiten möchtest , solltest Du beachten: [mm] $\left[ \ \ln(a) \ \right]' [/mm] \ = \ 0$ !
Willst Du es nochmal versuchen?
Gruß
Loddar
|
|
|
|
|
> Willst Du es nochmal versuchen?
Hab ich. Und ich bin zu der Erkenntnis gekommen, dass ich einfach absolut unfähig bin.
Bitte, bitte, bitte, schreib deinen Lösungsweg auf. Glaub mir, ich hab mich echt daran versucht, aber ich bin einfach zu blöd *g*. Da kann man nichts machen. Ich fürchte, auch wenn man mir jetzt noch 100 Tipps gibt, komm ich nicht drauf.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:27 So 13.03.2005 | Autor: | camonchen |
Mit Sicherheit lag es ausschließlich an der späten Stunde, normalerweise fliegt mir sowas ja praktisch zu *gg*
Aber vielen, vielen Dank, Loddar. Jetzt hab ichs verstanden
Was lange währt, wird endlich gut.
|
|
|
|