www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung einer Funktionenscha
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Exp- und Log-Funktionen" - Ableitung einer Funktionenscha
Ableitung einer Funktionenscha < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer Funktionenscha: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Di 17.11.2009
Autor: neep

also gegeben ist folgende Funktionenschar:
[mm] f_{k}(x)=(x-k)*e^{-x} [/mm]

so nach ner langen zeit stochastik bin ich bissl eingerostet :P
ich komme auf folgende ableitung:

[mm] f_{k}'(x)=-(x-k)*e^{-x} [/mm]

aber das buch sagt folgende lösung ist richtig:

[mm] f_{k}'(x)=-(x-k-1)*e^{-x} [/mm]

könnt ihr mir das mal erläutern? ich komm einfach nicht dahinter
ich habs nach der kettenregel gemacht: also erst das e abgeleitet mal die klammer und dann die ableitung von der klammer

hoffe jmd löst meinen blackout :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung einer Funktionenscha: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Di 17.11.2009
Autor: schachuzipus

Hallo neep und erstmal herzlich [willkommenmr],

> also gegeben ist folgende Funktionenschar:
>  [mm]f_{k}(x)=(x-k)*e^{-x}[/mm]
>  
> so nach ner langen zeit stochastik bin ich bissl
> eingerostet :P
>   ich komme auf folgende ableitung:
>  
> [mm]f_{k}'(x)=-(x-k)*e^{-x}[/mm]
>  
> aber das buch sagt folgende lösung ist richtig:
>  
> [mm]f_{k}'(x)=-(x-k-1)*e^{-x}[/mm]
>  
> könnt ihr mir das mal erläutern? ich komm einfach nicht
> dahinter
>  ich habs nach der kettenregel gemacht: also erst das e
> abgeleitet mal die klammer und dann die ableitung von der
> klammer
>  
> hoffe jmd löst meinen blackout :)

Nun, die Funktion ist ja in erster Linie ein Produkt [mm] $f_k(x)=\blue{(x-k)} [/mm] \ [mm] \cdot{} [/mm] \ [mm] \red{e^{-x}}$ [/mm]

Da nimm mal die Produktregel her:

[mm] $f_k'(x)=\left[\blue{(x-k)}\right]'\cdot{}e^{-x} [/mm] \ + \ [mm] (x-k)\cdot{}\left[\red{e^{-x}}\right]'$ [/mm]

Das rechne nochmal nach ...


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Ableitung einer Funktionenscha: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 Di 17.11.2009
Autor: neep


>  
> Da nimm mal die Produktregel her:
>  
> [mm]f_k'(x)=\left[\blue{(x-k)}\right]'\cdot{}e^{-x} \ + \ (x-k)\cdot{}\left[\red{e^{-x}}\right]'[/mm]
>  
> Das rechne nochmal nach ...

also  [mm] f_k'(x)= e^{-x}+(x-k)*(-e)^{-x} [/mm]

und im nächsten schritt is es ja schon
$ [mm] f_{k}'(x)=-(x-k-1)\cdot{}e^{-x} [/mm] $

richtig oder ?^^
danke schonmal:) stand echt aufn schlauch

Bezug
                        
Bezug
Ableitung einer Funktionenscha: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Di 17.11.2009
Autor: schachuzipus

Hallo nochmal,

> >  

> > Da nimm mal die Produktregel her:
>  >  
> > [mm]f_k'(x)=\left[\blue{(x-k)}\right]'\cdot{}e^{-x} \ + \ (x-k)\cdot{}\left[\red{e^{-x}}\right]'[/mm]
>  
> >  

> > Das rechne nochmal nach ...
>  
> also  [mm]f_k'(x)= e^{-x}+(x-k)*(-e)^{-x}[/mm]
>  
> und im nächsten schritt is es ja schon
>  [mm]f_{k}'(x)=-(x-k-1)\cdot{}e^{-x}[/mm]
>  
> richtig oder ?^^ [daumenhoch]

>  danke schonmal:) stand echt aufn schlauch

gell? ;-)

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]