www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung einer Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Ableitung einer Gleichung
Ableitung einer Gleichung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer Gleichung: Tipp / Idee
Status: (Frage) beantwortet Status 
Datum: 16:57 So 15.12.2013
Autor: Ellipsenkram

Hallo Forum,
ich arbeite zur Zeit an einer Projektarbeit zu Ellipsen. Nun stehe ich vor folgendem Problem:
Ich möchte im Laufe der Herleitung der Gleichung für Tangenten an einer Ellipse die Ellipsengleichung ableiten. Aus dem hier:
a²b²=b²x²+a²y²
soll dann laut einer Anleitung das hier:
0=2b²x+2a²yy'
werden.
Dass aus a²b² dann 0 wird, und aus b²x² dann 2b²x, das ist mir natürlich klar, denn ich leite ja nach x ab. Aber: wie komme ich denn von a²y² zu 2a²yy' ?
Entweder stehe ich TOTAL auf dem Schlauch, oder ich hatte es schlicht noch nicht. Btw, bin in der 11-LK-Klasse Gymnasium.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke im Voraus :D

        
Bezug
Ableitung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 So 15.12.2013
Autor: MathePower

Hallo Ellipsenkram,


[willkommenmr]


> Hallo Forum,
>  ich arbeite zur Zeit an einer Projektarbeit zu Ellipsen.
> Nun stehe ich vor folgendem Problem:
>  Ich möchte im Laufe der Herleitung der Gleichung für
> Tangenten an einer Ellipse die Ellipsengleichung ableiten.
> Aus dem hier:
>  a²b²=b²x²+a²y²
>  soll dann laut einer Anleitung das hier:
>  0=2b²x+2a²yy'
>  werden.
>  Dass aus a²b² dann 0 wird, und aus b²x² dann 2b²x,
> das ist mir natürlich klar, denn ich leite ja nach x ab.
> Aber: wie komme ich denn von a²y² zu 2a²yy' ?


y ist als Funktion von x angesetzt worden.

Es steht demnach da:

[mm]a^{2}*b^{2}=b^{2}*x^{2}+a^{2}*\left( \ y\left(x\right) \ \right)^{2}[/mm]


>  Entweder stehe ich TOTAL auf dem Schlauch, oder ich hatte
> es schlicht noch nicht. Btw, bin in der 11-LK-Klasse
> Gymnasium.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Danke im Voraus :D


Gruss
MathePower

Bezug
        
Bezug
Ableitung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 So 15.12.2013
Autor: Richie1401

Hi,

ja, Mathepower hat dich ja schon auf den richtigen Weg gebracht.
ich möchte hier nur noch einen Begriff mit ins Boot bringen:
Kettenregel! bzw. Produktregel!

man differenziere also einmal:
[mm] \frac{d}{dx}y(x)^2=\frac{d}{dx}\left(y(x)*y(x)\right) [/mm]

Ich denke jetzt sieht man es sehr gut.

Bezug
        
Bezug
Ableitung einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 So 15.12.2013
Autor: Ellipsenkram

Hallo,
die Ketten- und Produktregeln kenne ich (ein wenig). Jedenfalls hat mir ein Lehrer auch schon diesen Tipp gegeben, aber ich weiß damit gerade nicht so recht etwas anzufangen. Bei uns im LK haben wir noch nie eine Gleichung abgeleitet, bei der f(x) mit auf der Seite von x steht. Kann einer die genauen Rechenschritte bitte einmal aufzeigen?

Bezug
                
Bezug
Ableitung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 So 15.12.2013
Autor: Richie1401


> Hallo,
>  die Ketten- und Produktregeln kenne ich (ein wenig).
> Jedenfalls hat mir ein Lehrer auch schon diesen Tipp
> gegeben, aber ich weiß damit gerade nicht so recht etwas
> anzufangen. Bei uns im LK haben wir noch nie eine Gleichung
> abgeleitet, bei der f(x) mit auf der Seite von x steht.
> Kann einer die genauen Rechenschritte bitte einmal
> aufzeigen?

Die Produktregel sollte doch eigentlich klar sein:
Im Tafelwerk steht sie meist so:

(uv)'=u'v+uv'

Na dann gehts mal los:

[mm] (y^2)'=(yy)'=y'y+yy'=2yy' [/mm]

(Die Abhängigkeit von x habe ich mal weggelassen)

Bezug
        
Bezug
Ableitung einer Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 So 15.12.2013
Autor: Ellipsenkram

Richie1401,
ich stand einfach auf dem Schlauch, denn auf dasselbe bin ich just in dem Moment auch gekommen - ein großes DANKESCHÖN! Kaum zu glauben, wie schnell hier geantwortet wird.
Auch nochmals Danke an MathePower.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]