www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesAbleitung einer e-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Ableitung einer e-Funktion
Ableitung einer e-Funktion < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Sa 13.02.2010
Autor: Ednukru

Aufgabe
f(x):= [mm] \bruch{1}{1+e^{-x}} [/mm]

f'(x):= [mm] \bruch{e^{-x}}{(1+e^{-x})^{2}} [/mm]

Für f''(x) Quotientenregel:  
u  = [mm] e^{-x} [/mm]
u' = [mm] -e^{-x} [/mm]
v  = [mm] (1+e^{-x})^{2} [/mm]
v' = ??

Ansatz für v': Kettenregel: Innere mal äußere Ableitung
[mm] -e^{-x}(2(1+e^{-x}) [/mm]
Ausrechnen:
[mm] -e^{-x}(2+2e^{-x}) [/mm]
weiter ausrechnen:
[mm] -2e^{-x}-2e^{-2x} [/mm]
Hier muss in meinen Augen mein Problem liegen!

Lösung für v' (Ableitungsrechner):
[mm] -2e^{-2x}(1+e^{-x}) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Moin,

Ich bin Biostudent und schreibe am Dienstag eine Matheklausur. Ich halte mich eigentlich für weitesgehend vorbereitet, allerdings stoße ich beim Durchgehen der Probleklausur auf ein Problem, das ich noch habe. Es geht in der Aufgabe darum Monotonie und KJrümmungsverhalten der Kurve zu untersuchen, wofür ich ja die erste und zweite Ableitung brauche. Die erste ist soweit kein Problem, aber beim ableiten meines v für die Quotientenregel komme ich nicht weiter, ich weiß einfach nicht was ich da falsch mache, sodass ich nicht auf das gleiche Ergebnis wie der Ableitungsrechner komme.
Dadurch komme ich natürlich mit der kompletten Aufgabe nicht groß weiter, ich hoffe ihr könnt mir sagen, welchen Schritt ich übersehe, ich habs schon mit ausklammern probiert, aber das sieht der richtigen Lösung dann immernoch nicht ähnlich. :/

Vielen Danke schonmal, falls sich jemand die Zeit nimmt!

Grüße

        
Bezug
Ableitung einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Sa 13.02.2010
Autor: M.Rex

Hallo und [willkommenmr]

Du hast:

[mm] v(x)=(1+e^{-x})^{2} [/mm]

Also, wie du schon korrekt gesagt hast.

[mm] v'(x)=2*(1+e^{-x})*(-e^{-x}) [/mm]
[mm] =2*\left(-e^{-x}-\left(e^{-x}\right)^{2}\right) [/mm]
[mm] =2\left(-e^{-x}-\left(e^{-x}\right)^{2}\right) [/mm]
[mm] =-2\left(e^{-x}+\left(e^{-x}\right)^{2}\right) [/mm]
[mm] =-\left(2e^{-x}+2\left(e^{-x}\right)^{2}\right) [/mm]
[mm] =-2e^{-x}\left(1+e^{-x}\right) [/mm]

Ich komme aber auch nicht auf v', das der Rechner vorgibt.

Marius

Bezug
        
Bezug
Ableitung einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Sa 13.02.2010
Autor: schachuzipus

Hallo,

eine kleine Ergänzung:

> f(x):= [mm]\bruch{1}{1+e^{-x}}[/mm]
>  
> f'(x):= [mm]\bruch{e^{-x}}{(1+e^{-x})^{2}}[/mm]
>  
> Für f''(x) Quotientenregel:  
> u  = [mm]e^{-x}[/mm]
>  u' = [mm]-e^{-x}[/mm]
>  v  = [mm](1+e^{-x})^{2}[/mm]
>  v' = ??
>  
> Ansatz für v': Kettenregel: Innere mal äußere Ableitung
>  [mm]-e^{-x}(2(1+e^{-x})[/mm]
>  Ausrechnen:
> [mm]-e^{-x}(2+2e^{-x})[/mm]
>  weiter ausrechnen:
>  [mm]-2e^{-x}-2e^{-2x}[/mm] [ok]
>  Hier muss in meinen Augen mein Problem liegen!

Dein Ergebnis ist richtig!

>  
> Lösung für v' (Ableitungsrechner):
>  [mm]-2e^{-2x}(1+e^{-x})[/mm]

Kann es sein, dass du dich leicht verschrieben hast und es [mm] $-2e^{-2x}\left(1+e^{\red{x}}\right)$ [/mm] heißt, also ohne "-" im Exponenten, dann passt es nämlich.

Klammere aus deinem Ergebnis mal [mm] $-2e^{-2x}$ [/mm] aus ...

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]