www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisAbleitung euklidischer norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Ableitung euklidischer norm
Ableitung euklidischer norm < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung euklidischer norm: Frage
Status: (Frage) beantwortet Status 
Datum: 17:39 Mi 06.07.2005
Autor: bobby

Also, ich habe folgende Aufgabe zu bearbeiten:

Geben Sie alle partiellen Ableitungen der Funktion f: [mm] \IR^{n}\to\IR, [/mm] definiert durch [mm] f(x)=\parallel [/mm] x [mm] \parallel_{2} \forall [/mm] x [mm] \in \IR^{n}, [/mm] bis zur 2.Ordnung an. Ist die Funktion in x=0 partiell differenzierbar?

Ich habe jetzt die Ableitungen der 1.Ordnung bestimmt, bin aber nicht sicher obs richtig ist...
[mm] \partial_{n}f(x)=\bruch{x_{n}}{\parallel x \parallel_{2}} [/mm]

Und ih denke, dass f in x=0 nicht partiell differenzierbar ist, oder? Weis aber nicht wie ich das zeigen kann...

        
Bezug
Ableitung euklidischer norm: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 Mi 06.07.2005
Autor: Max

Hallo bobby,

die partielle Ableitung sieht gut aus, allerdings ist die Wurzelfunktion ja nur für [mm] $x\neq [/mm] 0$ differenzierbar. Wenn man die Stelle $x=0$ untersucht wird man schnell feststellen, dass dort alle partiellen Ableitungen wegen [mm] $\sqrt{x_n^2}=|x_n|$ [/mm] für [mm] $x_n=0$ [/mm] nicht definiert sind.

Gruß Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]