www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeAbleitung euleresche Zahl e
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - Ableitung euleresche Zahl e
Ableitung euleresche Zahl e < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung euleresche Zahl e: Überprüfung
Status: (Frage) beantwortet Status 
Datum: 22:56 Mi 03.05.2006
Autor: LaLune

Hallo!

Ich möchte die Extremstellen (Hoch-, Tiefpunkt, Wendepunkt) von der Gleichung ((e^(x)-e^(-x))  /  (e^(x)+e^(-x)) bestimmen. !!Achtung: e hier keine normale Variable, sondern eulersche Zahl!!
Ich bin nun so vorgegangen:

Quotientenregel:

$ f'(x) \ = \ [mm] \bruch{u'\cdot{}v-u\cdot{}v'}{v^2} [/mm] \ = \ [mm] \bruch{\left(e^x+e^{-x}\right)\cdot{}\left(e^x+e^{-x}\right)-\left(e^x-e^{-x}\right)\cdot{}\left(e^x-e^{-x}\right)}{\left(e^x+e^{-x}\right)\cdot{}\left(e^x+e^{-x}\right)} [/mm] \ = \ ... $

Nun habe ich die Ableitung, die f´(x)=0 gesetzt wird.

Wenn ich nun den gesamten Nenner der Gleichung rechts vom gleichheitszeichen verschiebe, so steht dort 0*....,d.h. ich bekomme 4 = 0
Nun, was mache ich nun? Laut Skizze müsste Hochpunkt auf ca. 2/1 (?)Tiefpunkt auf -2/-1 (?) und wendepunkt auf 0/0 liegen. Jedoch verläuft der Graph ab kleiner -2 (x-Wert) und größer +2 völlig parallel zur y-Ache (steigung 0). Bekomme ich dieshalb keinen hoch bzw Tiefpunkt? Wie sieht es mit dem Wendepunkt aus?

Lautet f´´(x) = (0*(e^(x)+e^(-x))² - 4 * ( ??? (vgl 1unten )) / [mm] (e^{x}+e^{-x})^4 [/mm]

1unten: f(u) = (e^(x)+e^(-x))²
f´(u) = kann mir das jemand ableiten?!

Ich hoffe, ihr könnt mir helfen!

Liebe Grüße...

        
Bezug
Ableitung euleresche Zahl e: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Mi 03.05.2006
Autor: leduart

Hallo Lalune
Du hast schon einen thread mit der Frage! Du kannst nicht nen neuen anfangen und nicht auf die Antworten im alten eingehen!
Hast du das Wort Kettenregel noch nie gehört?
Gruss leduart


Bezug
        
Bezug
Ableitung euleresche Zahl e: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 Mi 03.05.2006
Autor: Arkus

Willkommen LaLune :)

Deine Funktion lautet

[mm] $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ [/mm]

Hier die Qotientenregel anzuwenden ist richtig  :)

Du erhälst dann, wenn du den Zähler auflöst

[mm] $f'(x)=\frac{4}{(e^x+e^{-x})^2}$ [/mm]

Laut den Regeln erhälst du dann tatsächlich bei der Bestimmung der möglichen Extrema 0=4 und das ist eine falsche Aussage. Damit hat die Funktion keine Extrema. Das sieht man auch unmittelbar an der Zeichung. Ich vermute mal, dass deine Skizze falsch ist.

[Dateianhang nicht öffentlich]

Die zweite Ableitung lautet dann wieder nach der selben Regel (mit der Anwendung der Kettenregel):

[mm] $f''(x)=\frac{0\cdot (e^x+e^{-x})^2-4\cdot 2(e^x+e^{-x})(e^x-e^{-x})}{(e^x+e^{-x})^4}$ [/mm]

$f''(x)=-8 [mm] \cdot \frac{(e^x-e^{-x})}{(e^x+e^{-x})^3}$ [/mm]

Dabei leitest du f(x) = (e^(x)+e^(-x))² wie folgt ab:

Erst die gesammte Klammer ableiten ohne auf den Inhalt zu achten also [mm] f(x)=(...)^2 [/mm] -> f'(x)=2 [mm] \cdot [/mm] (...) und das multiplizierst du mit der Ableitung des Klammerinhaltes, hier als [mm] (e^x-e^{-x}). [/mm] Ok das war mal die Kettenregel auf gut deutsch :D

MfG Arkus

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]