www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAbleitung ln Fkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Exp- und Log-Funktionen" - Ableitung ln Fkt.
Ableitung ln Fkt. < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung ln Fkt.: Ableitung
Status: (Frage) beantwortet Status 
Datum: 13:33 So 26.11.2006
Autor: zeusiii

Aufgabe
Bilden sie die erste Ableitung  

hallo zusammen

hab heute mal wieder ne kurze Frage :


die Fkt .  

f(x) = ln [mm] (\bruch{t}{x}) [/mm]

f´t = [mm] \bruch{-t}{x^{2}}\bruch{t}{x} [/mm]

<=>  [mm] -\bruch{t}{x} [/mm]

müsste doch eigendlich so richtig sein oder?



freu mich über ne Antwort


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung ln Fkt.: Korrektur
Status: (Antwort) fertig Status 
Datum: 13:43 So 26.11.2006
Autor: Loddar

Hallo zeusiii!


Das stimmt leider nicht!


Zerlege Deinen Term zunächst gemäß MBLogarithmusgesetz: [mm] $\log_b\left(\bruch{m}{n}\right) [/mm] \ = \ [mm] \log(m)-\log(n)$ [/mm] .

Damit sollte sich nun die Ableitung schnell bestimmen lassen.


Anderenfalls musst du hier die MBKettenregel anwenden:

$f'(x) \ = \ [mm] \bruch{1}{\bruch{t}{x}}*\left(\bruch{t}{x}\right)' [/mm] \ = \ [mm] \bruch{x}{t}*\left(-\bruch{t}{x^2}\right) [/mm] \ = \ ...$


Gruß
Loddar


Bezug
        
Bezug
Ableitung ln Fkt.: wie oben
Status: (Frage) beantwortet Status 
Datum: 13:59 So 26.11.2006
Autor: zeusiii

Aufgabe
wie oben  plus eine zweite Aufgabe die ich beim ersten post vergessen hatte .

Hallo

da haben sich Fehler eingeschlichen :


> Bilden sie die erste Ableitung
> hallo zusammen
>
> hab heute mal wieder ne kurze Frage :
>  
>
> die Fkt .  
>
> f(x) = ln [mm](\bruch{t}{x})[/mm]
>  
> f´t = [mm]\bruch{-t}{x^{2}} \bruch{t}{x}[/mm]
>  
> <=>  [mm]-\bruch{t}{x}[/mm]

>  
> müsste doch eigendlich so richtig sein oder?
>  
>
>
> freu mich über ne Antwort
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.



das Ergebnis muss natürlich


f'(x) =  - [mm] \bruch{1}{x} [/mm]

heissen und nicht   t durch t


beim auflösen des Doppelbruchs kürzt sich das t ja weg


f'(x) =  (-t / [mm] x^2 [/mm] ) * (x/ t )

<=> f'(x) =  -1/x


Die zweite Aufgabe ist :


f(t) = ln (t/x)

da müsste es doch so ähnlich sein ,nur das die Variable jetzt oben im Bruch steht


f'(t)  =  [mm] \bruch{t}{t^{2}} [/mm] * [mm] \bruch{t}{x} [/mm]

<=> f´(t) = [mm] \bruch{1}{x} [/mm]



freu mich über ne Antwort






Bezug
                
Bezug
Ableitung ln Fkt.: Korrektur
Status: (Antwort) fertig Status 
Datum: 12:14 Di 28.11.2006
Autor: Loddar

Hallo zeusiii!


> Die zweite Aufgabe ist : f(t) = ln (t/x)
>  
> da müsste es doch so ähnlich sein ,nur das die Variable
> jetzt oben im Bruch steht

[ok] Genau!



> f'(t)  =  [mm]\bruch{t}{t^{2}}[/mm] * [mm]\bruch{t}{x}[/mm]
>
> <=> f´(t) = [mm]\bruch{1}{x}[/mm]

[notok] Zerlege hier doch auch zunächt mittels MBLogarithmusgesetz:

$f(t) \ =\ [mm] \ln\left(\bruch{t}{x}\right) [/mm] \ = \ [mm] \ln(t)-\ln(x)$ [/mm]

[mm] $\Rightarrow [/mm] \ \ f'(t) \ = \ [mm] \bruch{1}{t}-0 [/mm] \ =\ ...$


Mittels MBKettenregel muss es lauten:

$f'(t) \ = \ [mm] \bruch{1}{\bruch{t}{x}}*\bruch{1}{x} [/mm] \ = \ ...$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]