www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung mit der h-Methode
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Ableitung mit der h-Methode
Ableitung mit der h-Methode < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung mit der h-Methode: Aufgabe 5 a) und b)
Status: (Frage) beantwortet Status 
Datum: 20:27 So 18.03.2012
Autor: Markus1992

Aufgabe
Aufgabe: Bestimme mit der h-Methode jeweils die Ableitung der angebenen Funktion an der jeweils angegebenen Stelle.

a) f(x) = [mm] x^2 [/mm] - 3x + 2 ; x0 = -3

    m = [mm] \bruch{-3 + h - (-3)}{h} [/mm]

        = [mm] \bruch{(-3 + h)^2 +3(-3 + h) + 2 - [-3^2 + 3 * (-3) + 2]}{h} [/mm]
        = [mm] \bruch{-3^2 +6h + h^2 - 9 + 3h +2 +3^2 + 9 -2}{h} [/mm]
        = [mm] \bruch{9h + h^2}{h} [/mm]
        = [mm] \bruch{h (9 + h)}{h} [/mm]

[mm] \limes_{h=0} [/mm] (9 + h) = 9
        

b)f(x) = [mm] \bruch{1}{2+x} [/mm] ; x0= 2




Die Aufgabe a) habe ich zwar gelöst, aber bin mir ehrlich gesagt nicht sicher, ob die Lösungansätze richtig sind.

und bei der Aufgabe b) (mit Brüchen) komme ich gar nicht klar... kann mir jemand weiterhelfen?

mfg Markus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung mit der h-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 So 18.03.2012
Autor: pc_doctor

Hallo ,

du hast leider deine Rechnung in die Aufgabenstellung mitreingeschrieben.

Du hast einen Vorzeichenfehler bei a , da kommt -9 raus ( kannst das mit der "normalen" Ableitung überprüfen).

ZITAT : " $ [mm] \bruch{(-3 + h)^2 +3(-3 + h) + 2 - [-3^2 + 3 \cdot{} (-3) + 2]}{h} [/mm] $ "

Du hast statt - + geschrieben , es heißt -3*(-3+h).

Die allgemeine Formel lautet so hier :

[mm] lim_{h\rightarrow\ 0 } \bruch{f(x_0+h)-f(x)}{h} [/mm]

[mm] lim_{h\rightarrow\ 0 } \bruch{((-3+h)^{2})-3(-3+h)+2)-(9+9+2)}{h} [/mm]

[mm] lim_{h\rightarrow\ 0 } \bruch{(h^{2}-6h+9)-3h+9+2-20}{h} [/mm]

[mm] lim_{h\rightarrow\ 0 } \bruch{h^{2}-9h+20-20}{h} [/mm]

[mm] lim_{h\rightarrow\ 0 } \bruch{h^{2}-9h}{h} [/mm]

[mm] lim_{h\rightarrow\ 0 } \bruch{h(h-9)}{h} [/mm] = -9

Beim Bruch genau das gleiche Schema abarbeiten.
Aber aufpassen beim Nenner , durch Null teilen ist nicht definiert!

Bezug
                
Bezug
Ableitung mit der h-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 So 18.03.2012
Autor: Markus1992

Aufgabe
Die Aufgabe zu b) lautet folgenderweise:

Bestimme mit der h-Methode jeweils die Ableitung der angebenen Funktion an der jeweils angebenen Stelle.



f(x) = [mm] \bruch{1}{2 + x} [/mm]  ;    x0 = 2


Ah hast recht... habe auf die Vorzeichen nicht geachtet :) Vielen Dank.

also bei der b) habe ich folgendes raus: (ich muss sagen, bei Brüchen bin ich nicht grad der beste)

lim h->0 = [mm] (\bruch{1}{2+2+h}) [/mm] - [mm] [\bruch{1}{2+2+h}] [/mm]
lim h->0 = [mm] (\bruch{1}{4+h}) [/mm] - [mm] [\bruch{1}{4+h}] [/mm]
lim h->0 = [mm] \bruch{0}{0} [/mm] = 0

Ich glaube die Rechnung ist völlig falsch... weil ein Freund von mir auf folgende Ergebnis kommt: f'(2) = [mm] \limes_{h\rightarrow\0} (\bruch{-1}{16+4h}) [/mm] = [mm] \bruch{-1}{16} [/mm]


jedoch hat er mir nicht den Lösungsansatz nicht aufgeschrieben, kann mir jmd weiterhelfen?

Bezug
                        
Bezug
Ableitung mit der h-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 So 18.03.2012
Autor: chrisno


>  
> lim h->0 = [mm](\bruch{1}{2+2+h})[/mm] - [mm][\bruch{1}{2+2+h}][/mm]

Im zweiten Term gehört das h nicht hin, da steht doch nur [mm] $f(x_0)$ [/mm]
Dann fehlt noch, dass das Ganze durch h geteilt werden soll.
Es heißt doch [mm] $\bruch{f(x_0 + h) - f(x_0)}{h}$ [/mm]
[mm] $\limes_{h\rightarrow\ 0} \left(\bruch{\bruch{1}{2+2+h} - \bruch{1}{2+2}}{h}\right)$ [/mm]

[mm] $\limes_{h\rightarrow\ 0} \left(\bruch{\bruch{1}{4+h} - \bruch{1}{4}}{h}\right)$ [/mm]


Die Brüche im Zähler auf den Hauptnenner bringen und addieren
[mm] $\limes_{h\rightarrow\ 0} \left(\bruch{\bruch{4 \cdot 1}{4 \cdot(4+h)} - \bruch{1 \cdot(4+h)}{4 \cdot(4+h)}}{h}\right)$ [/mm]
[mm] $\limes_{h\rightarrow\ 0} \left(\bruch{\bruch{4 - (4+h)}{4 \cdot(4+h)}}{h}\right)$ [/mm]
[mm] $\limes_{h\rightarrow\ 0} \left(\bruch{\bruch{-h}{16 + 4 h}}{h}\right)$ [/mm]
Doppelbruch beseitigen
[mm] $\limes_{h\rightarrow\ 0} \left(\bruch{-h}{(16 + 4 h) \cdot h}\right)$ [/mm]

und der Rest bleibt für Dich: h herauskürzen und dann den Grenzwert berechnen.

> Ich glaube die Rechnung ist völlig falsch... weil ein
> Freund von mir auf folgende Ergebnis kommt: f'(2) =
> [mm]\limes_{h\rightarrow\0} (\bruch{-1}{16+4h})[/mm] =
> [mm]\bruch{-1}{16}[/mm]

Das kannst Du dann vergleichen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]