www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung von ArcTan
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Ableitung von ArcTan
Ableitung von ArcTan < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von ArcTan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:57 So 07.05.2006
Autor: Sunday

Aufgabe
Beweisen Sie für alle a > 0 und x > 0 die Gleichung:

arctan [mm] \bruch{x}{a} [/mm] + arctan [mm] \bruch{a}{x} [/mm] = [mm] \bruch{\pi}{2} [/mm]

Beweisen Sie das die Funktion

f(x) = arctan [mm] \bruch{x}{a} [/mm] + arctan [mm] \bruch{a}{x} [/mm]
konstant ist.

Die Funktion ist ja konstant, wenn die erste Ableitung 0 ist, aber da ist schon das Problem, dass ich diese erste Ableitung net hinbekomme. Mich verwirrt das a in der Gleichung.

Die Ableitung von arctan(x) ist ja [mm] \bruch{1}{1+x^{2}} [/mm]

Wie muss ich da vorgehen?

Ist folgende Ableitung:

f'(x) = [mm] \bruch{1}{1+ \left( \bruch{x}{a}\right)^{2}}+\bruch{1}{1+ \left( \bruch{a}{x}\right)^{2}} [/mm]

schonmal richtig?





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Ableitung von ArcTan: innere Ableitungen
Status: (Antwort) fertig Status 
Datum: 11:05 So 07.05.2006
Autor: Loddar

Hallo Sunday!



> Ist folgende Ableitung schonmal richtig?
>  
> f'(x) = [mm]\bruch{1}{1+ \left( \bruch{x}{a}\right)^{2}}+\bruch{1}{1+ \left( \bruch{a}{x}\right)^{2}}[/mm]

[notok] Du hast jeweils die inneren Ableitungen gemäß MBKettenregel vergessen.

Es muss also heißen:

$f'(x) = [mm] \bruch{1}{1+ \left( \bruch{x}{a}\right)^{2}}*\blue{\left(\bruch{x}{a}\right)'}+\bruch{1}{1+ \left( \bruch{a}{x}\right)^{2}}*\blue{\left(\bruch{a}{x}\right)'}$ [/mm]


Bedenke noch, dass gilt:  [mm] $\bruch{a}{x} [/mm] \ = \ [mm] a*x^{-1}$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Ableitung von ArcTan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 So 07.05.2006
Autor: Sunday

Wieso Kettenregel? Woran sehe ich denn, dass ich diese hier verwenden muss? Ich dachte die ist für verkettete Funktionen, wie [mm] (x+2)^2. [/mm] Wo ist hier die Verkettung?

Bezug
                        
Bezug
Ableitung von ArcTan: nicht nur x im Argument
Status: (Antwort) fertig Status 
Datum: 11:53 So 07.05.2006
Autor: Loddar

Hallo Sunday!


Du musst hier die MBKettenregel verwenden, da Du nicht nur $x_$ als Argument der [mm] $\arctan$-Funktion [/mm] vorliegen hast. Damit liegt auch automatisch eine verkette Funktion vor.


Gruß
Loddar


Bezug
                
Bezug
Ableitung von ArcTan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:56 So 07.05.2006
Autor: Sunday

Hi,

okay mit Kettenregel komme ich dann für die 1. Ableitung auf 0.

[mm] \bruch{1}{1+\left(\bruch{x}{a}\right)^2}*\left(\bruch{x}{a}\right)'+\bruch{1}{1+\left(\bruch{a}{x}\right)^2}*\left(\bruch{a}{x}\right)' [/mm]

entspricht:

[mm] \bruch{1}{1+\left(\bruch{x}{a}\right)^2}*\bruch{1}{a}+\bruch{1}{1+\left(\bruch{a}{x}\right)^2}*\bruch{-a}{x^2} [/mm]

und weiter:

[mm] \bruch{1}{a+\bruch{x^2}{a}}+\bruch{-a}{x^2+a^2} [/mm]

[mm] \bruch{a}{a^2+x^2}-\bruch{a}{x^2+a^2} [/mm] =  0

alles richtig?


Bezug
                        
Bezug
Ableitung von ArcTan: Stimmt so!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:03 So 07.05.2006
Autor: Loddar

Hallo Sunday!


[daumenhoch] !!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]