www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieAbleitung von einem Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Ableitung von einem Integral
Ableitung von einem Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von einem Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:03 So 03.02.2008
Autor: Caroline

Hallo liebe Leute,

ich komme bei folgender Aufgabe nicht weiter, ich hoffe ihr könnt mir helfen:

----------
g(x) = [mm] \integral_{-1}^{1}{\sqrt{|x-t|}dx} [/mm]

x [mm] \in [/mm] (-1,1)

Zu zeigen: g’ ex. und berechnen sie diese
----------

So wir hatten einen Satz in der Vorlesung der besagte:

Sei f:[a,b]x[c,d] --> [mm] \IR [/mm] stetig
[mm] \partial_{2}f [/mm] ex. Und sei stetig, dann ist
g: [c,d] --> [mm] \IR, [/mm] g(x) = [mm] \integral_{a}^{b}{f(t,x) dt} [/mm] stetig diffbar und

g’(x) = [mm] \integral_{a}^{b}{\partial_{2}f(t,x)dt} [/mm]

So nun habe ich mir f angeschaut und ob es stetig ist an der Stelle x=t, ja ist es, egal von welcher Seite es gibt 0, also weiß ich nun (nach einem vorherigen Satz) dass g auch stetig ist, aber ich habe nun f nach x abgeleitet und leider ist dies nicht stetig, es gibt mir eine Polstelle bei x=t... Nun kann ich ja den Satz nicht anwenden, gibt es eine andere Möglichkeit? Habe bei uns leider keinen anderen Satz gefunden... oh doch, habe gerade nochmal nachgeschaut, wir haben dann noch den obigen Satz erweitert...:

i) x --> f(x,y) intbar für alle y
ii) y --> f(x,y) part. Diffbar für alle x und alle y

iii) Es ex. h [mm] \in L^{1} [/mm] mit [mm] |\partial_{2}f(x,y)| \le [/mm] h(x) für alle x und alle y

So i) und ii) habe ich ja schon oben abgedeckt, aber wie soll ich eine Majorante h finden, die in [mm] L^{1} [/mm] ist, also deren Integral endlich? [mm] |\partial_{x}f| [/mm] geht mir ja gegen unendlich, je näher ich mit x an das t komme...

Hoffe ihr könnt mir helfen...

LG

Caro

        
Bezug
Ableitung von einem Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 So 03.02.2008
Autor: abakus

Veranschauliche dir doch erst einmal den Sachverhalt!
Skizziere dir die Funktion [mm] \wurzel{|x-t|} [/mm] im Intervall (-1;1). Wenn du für t einen beliebigen Wert außerhalb des Intervalls (-1;1) wählst, geht es um eine stinknormale Fläche unter einer Wurzelfunktion.
Wenn du ein t innerhalb des Intervalls wählst, besteht der Graph aus zwei Ästen von Wurzelfunktionen, die spiegelsymmetrisch zur Geraden x=t liegen. Bei Annäherung aus Richtung x= -1 gegen x=t geht der Flächenzuwachs an der Stelle t gegen Null (und steigt nach überschreiten dieser Stelle auch erst einmal kaum).


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]