www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitung waagerechte Tangente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Ableitung waagerechte Tangente
Ableitung waagerechte Tangente < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung waagerechte Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:54 Mi 26.09.2007
Autor: itse

Aufgabe
An welchen Stellen im abgeschlossenen Intervall von [mm] $-2\pi$ [/mm] bis $+ [mm] 2\pi$ [/mm] hat der Graph von f(x)= 3 sin x eine waagerechte Tangente?

Hallo Zusammen,

die Abteilung sieht so aus:

f'(x) = 3 cos x

nun muss ich die Ableitung Null setzen und schauen an welchen Stellen des Intervalls dies zutrifft. Aufgrund von Symmetrie beschränke ich das Intervall von 0 bis $+ [mm] 2\pi$. [/mm]

0 = 3 cos x und für x das Intervall, nur wie mache ich das? Die Ableitung ist Null gesetzt (waagerechte Tangente) und nun muss ich schauen für welche Werte: 0 = 3 cos x zutrifft. Wie "integriere" ich dieses Intervall? Vielen Dank.

        
Bezug
Ableitung waagerechte Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mi 26.09.2007
Autor: leduart

Hallo
der Graph von 3sinx hat dieselben waagerechten Tangenten wie sinx. Die kennst du aber. ebenso die Nullstellen von 3cosx nämlich die von cosx.
Die Nullstellen liegen sym zu 0, also hast du alle wenn du die zw. 0 und [mm] 2\pi [/mm] kennst.
Gruss leduart


Bezug
                
Bezug
Ableitung waagerechte Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Mi 26.09.2007
Autor: itse


>  der Graph von 3sinx hat dieselben waagerechten Tangenten
> wie sinx. Die kennst du aber. ebenso die Nullstellen von
> 3cosx nämlich die von cosx.
>  Die Nullstellen liegen sym zu 0, also hast du alle wenn du
> die zw. 0 und [mm]2\pi[/mm] kennst.
>  Gruss leduart

Das ist klar, dass der Faktor nicht die Nullstellen verschiebt. Wie kann ich dies mathematisch mit der Ableitung bestimmen?

$0 = cos [mm] (0-2\pi)$ [/mm]

cos(0)=90 Grad also [mm] $1/2*\pi$ [/mm] und der Taschenrechner gibt immer nur den ersten Wert aus, aber bei 270 Grad schneidet der Graph die Tangente noch einmal und dies ist dann [mm] $\pi [/mm] + [mm] 1/2\pi$ [/mm] also [mm] $3/2\pi$. [/mm] Wie kann ich bei meinem Taschenrecher auch den zweiten Wert ausgeben lassen? Ich hab nen Casio fx-992s, oder geht das einfach nicht und man muss selbst mitdenken?

0 - [mm] 2\pi: $\bruch{1}{2}\pi$, $\bruch{3}{2}\pi$ [/mm]

[mm] -2\pi [/mm] - 0: [mm] $-\bruch{1}{2}\pi$, $-\bruch{3}{2}\pi$ [/mm]


Nur noch eine kurze Frage, als Überprüfung für mich:

Bestimmen Sie die Steigung der Tangente an den Graphen der Funktion f mit f(x)=0,2 [mm] \wurzel{x} ($x\in\IR$, [/mm] x > 0) an der Stelle [mm] $x_0$ [/mm] = 9.

$f'(9)=0,2 [mm] \bruch{1}{2\wurzel{9}} [/mm] = [mm] \bruch{0,2}{6} [/mm] = [mm] \bruch{1}{30}$ [/mm]

passt das so?


Bezug
                        
Bezug
Ableitung waagerechte Tangente: Zusatzfrage
Status: (Antwort) fertig Status 
Datum: 13:49 Mi 26.09.2007
Autor: Roadrunner

Hallo itse!



> Bestimmen Sie die Steigung der Tangente an den Graphen der Funktion f
> mit f(x)=0,2 [mm]\wurzel{x}[/mm] ([mm]x\in\IR[/mm], x > 0) an der Stelle [mm]x_0[/mm] = 9.
>  
> [mm]f'(9)=0,2 \bruch{1}{2\wurzel{9}} = \bruch{0,2}{6} = \bruch{1}{30}[/mm]

[daumenhoch]


Gruß vom
Roadrunner


Bezug
                        
Bezug
Ableitung waagerechte Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Mi 26.09.2007
Autor: leduart

Hallo
Der TR gibt immer nur die Hauptwerte an, die periode musst du selbst wissen!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]