www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Ableitungen
Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:15 So 04.03.2007
Autor: Con182

Aufgabe
Berechnen sie die ableitung:

y= [mm] 3e^4-x [/mm]

y= -(Cos(3x)) / 2


Hallo, wer kann mir helfen diese Ableitungen zu berechnen? Und wie genau man vorgeht....

Freundliche Grüße

        
Bezug
Ableitungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 So 04.03.2007
Autor: Con182

Die aufgabe 1 soll eigentlich heissen.......

y= 4e "hoch"  (4-x)



Bezug
        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 So 04.03.2007
Autor: Steffi21

Hallo,

[mm] f(x)=3e^{4}-x, [/mm] eine Konstante [mm] 3e^{4} [/mm] hat die Ableitung 0, also brauchst du nur die Ableitung von -x bilden
f'(x)=-1

[mm] f(x)=\bruch{-cos(3x)}{2}=-\bruch{1}{2}cos(3x), [/mm] ein konstanter Faktor [mm] -\bruch{1}{2} [/mm] bleibt erhalten, die Ableitung von cos(x) ist -sin(x), da du die Kettenregel benutzen mußt, brauchst du noch die innere Ableitung von 3x, die 3 ist, somit ergibt sich:
[mm] f'(x)=-\bruch{1}{2}*(-sin(3x))*3=\bruch{3}{2}sin(3x) [/mm]

Steffi

Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 So 04.03.2007
Autor: Con182

Danke,
die cos-aufgabe hab ich verstanden, bei der "eulerschen" aufgabe hab ich mich irgendwie vertippt vorhin.......

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 So 04.03.2007
Autor: Teufel

Hi!

Diese Funktionen kannst du eigentlich auch imemr so ableiten:

[mm] f(x)=c*e^{g(x)} [/mm]
[mm] f'(x)=c*g'(x)*e^{g(x)} [/mm]

Also musst du die Funktion im Exponenten ableiten und ihn bei der Ableitung als Faktor vor das e setzen.

Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 So 04.03.2007
Autor: Con182

Heisst das in diesem Fall, ich leite 4-x ab also -1 setz das vors e also -4??

Ergebnis: -4e "hoch" (4-x)??

Bezug
                                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 So 04.03.2007
Autor: Steffi21

Hallo,

so ist es: [mm] f'(X)=-4e^{(4-x)} [/mm]

Steffi


Bezug
                                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 So 04.03.2007
Autor: Con182

Und wie löse ich die aufgabe
y= 4/    3.Wurzel aus [mm] (5x)^2? [/mm]

Ich komme auf:

-8/3* (5x)^ -5/3


Stimmt das??

Bezug
                                                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 So 04.03.2007
Autor: Steffi21

Hallo,

du mußt noch die innere Ableitung von 5x bilden, die ist 5, es fehlt also der Faktor 5:

Steffi


Bezug
        
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Mo 05.03.2007
Autor: Con182

Hallo,

heute haben wir die Arbeit geschrieben.
Es kam die Aufgabe

y=cos²(x) - sin²(x)

ich bin auf folgende Lösung gekommen:

Y=2sin(x)*1 + 1cos(x)*1 abgeleitet.

Ist das korrekt??

Freundliche Grüße

Bezug
                
Bezug
Ableitungen: leider falsch
Status: (Antwort) fertig Status 
Datum: 13:29 Mo 05.03.2007
Autor: Roadrunner

Hallo Con!


Das ist leider nicht richtig ... Du hast hier die inneren Ableitungen gemäß MBKettenregel vergessen:

$f'(x) \ = \ [mm] 2*\cos^1(x)*[-\sin(x)]-2*\sin^1(x)*\cos(x) [/mm] \ = \ [mm] -4*\sin(x)*\cos(x) [/mm] \ = \ [mm] -2*\sin(2x)$ [/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]