www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenAbleitungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Ableitungen
Ableitungen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 26.09.2007
Autor: Sternchen0707

x³ / (x+2)²

Also man muss das ja dann nach der Quotientenregel ableiten... Das verstehe ich auch

3x² (x+2)² - (x³) (2x+4) / (x+2) ^4

So... jetzt weiß ich auch nicht weiter.
Wie soll ich mit dem Term (x+2)² umgehen? kann ich den durch den nenner einfach teilen?

Wäre lieb wenn mir jemand die ganze ableitung mal vorrechnen könnte. Danke

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mi 26.09.2007
Autor: Kroni

Hi,

ja, die Quotientenregel zuerst anweden. Also so:

[mm] $f(x)=\frac{x^3}{(x+2)^2}$ [/mm]

[mm] $f'(x)=\frac{3x^2\*(x+2)^2-2(x+2)\*x^3}{(x+2)^4}$ [/mm]

Das ist alles.

> x³ / (x+2)²
>  
> Also man muss das ja dann nach der Quotientenregel
> ableiten... Das verstehe ich auch
>
> 3x² (x+2)² - (x³) (2x+4) / (x+2) ^4
>  
> So... jetzt weiß ich auch nicht weiter.
>  Wie soll ich mit dem Term (x+2)² umgehen? kann ich den
> durch den nenner einfach teilen?

Jein. Wenn du erst die Summe auseinanderziehst dann ja. Aber wenn du einfach kürzen würdest, ddann müsstest du auch den zweiten Summanden [mm] $-x^3(2x+4)$ [/mm] durch [mm] $(x+2)^2$ [/mm] teilen, da sbringt dir also nicht sonderlich viel.

>
> Wäre lieb wenn mir jemand die ganze ableitung mal
> vorrechnen könnte. Danke  

LG

Kroni


Bezug
        
Bezug
Ableitungen: kürzen
Status: (Antwort) fertig Status 
Datum: 15:51 Mi 26.09.2007
Autor: Roadrunner

Hallo Sternchen!


Wenn Du hier die Ableitung aufschreibst wie oben mit
$$f'(x) \ = \ [mm] \bruch{3x^2*\blue{(x+2)}^2-x^3*2*\blue{(x+2)}}{(x+2)^4}$$ [/mm]
kannst Du im Zähler den Term [mm] $(x+2)^1 [/mm] \ = \ (x+2)$ ausklammern und kürzen.

Anschließend dann im Zähler ausmultiplizieren und zusammenfassen ...


Gruß vom
Roadrunner


Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Mi 26.09.2007
Autor: Sternchen0707

gut, also das habe ich schonmal verstanden... Danke

Jetzt habe ich noch eine aufgabe, bei der ich nicht so richtig weiter komme:

x / (x+4) (x-0,5)

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Mi 26.09.2007
Autor: crashby

Hey Sternchen :)

Meinst du das hier?

[mm]f(x)=\frac{x}{ (x+4) *(x-0,5)}[/mm]

Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Mi 26.09.2007
Autor: Sternchen0707

ja

Bezug
                                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Mi 26.09.2007
Autor: crashby

Hey,

hier kannst du wieder Qoutientenregel anwenden nachdem du den Nenner ausmultipliziert hast.

[mm]f(x)=\frac{x}{(x^2+\frac{7}{2}*x-2)}[/mm]

[mm]u=x[/mm]
[mm]v=x^2+\frac{7}{2}*x-2[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]