www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Ableitungen
Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Korrektur u. Idee
Status: (Frage) beantwortet Status 
Datum: 11:28 Di 13.09.2011
Autor: mathegenie_90

Hallo liebe Forumfreunde ,leider komme ich bei folgender Aufgabe nicht weiter bzw. weiß nicht ob ich die korrekt gelöst habe, deshalb bitte ich euch um eure Hilfe.

a) [mm] f(x)=px-\bruch{c}{2}x^{2} [/mm]                 anstatt p denke ich mir eine Zahl:z.B.: 4x,wenn man das ableitet bleibt ja nur 4 übrig deswegen hier nur p,so habe ich bei den aufgaben gedacht.
    [mm] f'(x)=p-\bruch{2cx}{2}=p-cx [/mm]

b) [mm] f(c)=px-\bruch{c}{2}x^{2} [/mm]
    [mm] f'(x)=-0,5*x^{2} [/mm]

c) g(z)=(a-z-y-c)(z-cy)
          [mm] =az-acy-z^{2}+cyz-yz+cy^{2}-cz+c^{2}y [/mm]
    g'(z)=a-2z+cy-y-c

d) [mm] g(x)=sin(x)*x^{4} [/mm]
    g'(x)=cos [mm] (x)*x^{4}+sin(x)*4x^{3} [/mm]

e) [mm] h(r)=\wurzel{r}*θ [/mm] -ln((θ-r)/r)
    [mm] h'(r)=-\bruch{1}{2r*\wurzel{x}}+ [/mm]       hier komme ich jetzt nicht mehr weiter

f) [mm] u(s)=e^{As^{2}-Bs-C}*(D-s) [/mm]
   [mm] u'(s)=2e^{As-B}*(D-s)+e^{As^{2}-Bs-C}*(-1) [/mm]

g) Bilden Sie folgende Ableitung
  
  
   [mm] G(q_{3})=(A-B *\summe_{i=1}^{13}*q_{i})q_{3}-\bruch{1}{3}q^2_3 [/mm]

hier fehlt mir auch jeglicher Ansatz.

h) f(p)=pD(p)-K(D(p)). Hier sind K und D ebenfalls Funktionen, die man nach p ableiten kann.
  
Hier komme ich leider auch nicht weiter.

i) [mm] L(x)=-\bruch{n}{2}ln(2\pi)-\bruch{n}{2}ln\lambda^2-\bruch{1}{2\lambda^2}(\mu-x)^2 [/mm]

bei der Ableitung fallen ja die ersten 2 teile weg,da dort keine x gibt,also muss ich folgendes ableiten:  [mm] -\bruch{1}{2\lambda^2}(\mu-x)^2 [/mm]

und jetzt weiß ich wieder nicht mehr weiter.

würd mich über jede Hilfe freuen.
vielen dank im voraus.

Mfg
danyal

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:49 Di 13.09.2011
Autor: notinX

Hallo,

> Hallo liebe Forumfreunde ,leider komme ich bei folgender
> Aufgabe nicht weiter bzw. weiß nicht ob ich die korrekt
> gelöst habe, deshalb bitte ich euch um eure Hilfe.
>  
> a) [mm]f(x)=px-\bruch{c}{2}x^{2}[/mm]                 anstatt p
> denke ich mir eine Zahl:z.B.: 4x,wenn man das ableitet
> bleibt ja nur 4 übrig deswegen hier nur p,so habe ich bei
> den aufgaben gedacht.
>      [mm]f'(x)=p-\bruch{2cx}{2}=p-cx[/mm]

richtig.

>  
> b) [mm]f(c)=px-\bruch{c}{2}x^{2}[/mm]
>      [mm]f'(x)=-0,5*x^{2}[/mm]

Wenn Du mit f' die Ableitung nach x, also [mm] $\frac{\partial}{\partial x}f$ [/mm] meinst, stimmt das nicht. Aber Du meinst vermutlich [mm] $\frac{\partial}{\partial c}f$ [/mm] - dann wäre es richtig.

>  
> c) g(z)=(a-z-y-c)(z-cy)
>            [mm]=az-acy-z^{2}+cyz-yz+cy^{2}-cz+c^{2}y[/mm]
>      g'(z)=a-2z+cy-y-c

Sieht richtig aus, falls Du die Ableitung nach z meinst.

>  
> d) [mm]g(x)=sin(x)*x^{4}[/mm]
>      g'(x)=cos [mm](x)*x^{4}+sin(x)*4x^{3}[/mm]

Auch richtig.

>  
> e) [mm]h(r)=\wurzel{r}*θ[/mm] -ln((θ-r)/r)
>      [mm]h'(r)=-\bruch{1}{2r*\wurzel{x}}+[/mm]       hier komme ich
> jetzt nicht mehr weiter

Welche Regel musst Du hier benutzen? Und wo kommt in der Ableitung auf einmal das x her?

>  
> f) [mm]u(s)=e^{As^{2}-Bs-C}*(D-s)[/mm]
>     [mm]u'(s)=2e^{As-B}*(D-s)+e^{As^{2}-Bs-C}*(-1)[/mm]

Hier hast Du die Kettenregel nicht richtig angewendet. Was ergibt denn [mm] $\frac{\partial}{\partial s}e^{As^{2}-Bs-C}=$? [/mm]

>  
> g) Bilden Sie folgende Ableitung
>    
>
> [mm]G(q_{3})=(A-B *\summe_{i=1}^{13}*q_{i})q_{3}-\bruch{1}{3}q^2_3[/mm]
>  
> hier fehlt mir auch jeglicher Ansatz.G

Schreib das mal um, vielleicht wirds dann leichter:
[mm] $G(q_{3})=\left(A-B\cdot\sum_{i=1}^{13}q_{i}\right)q_{3}-\frac{1}{3}q_{3}^{2}=\left(A-B\cdot\sum_{i=1}^{2}q_{i}-Bq_{3}-B\cdot\sum_{i=4}^{13}q_{i}\right)q_{3}-\frac{1}{3}q_{3}^{2}$ [/mm]

>  
> h) f(p)=pD(p)-K(D(p)). Hier sind K und D ebenfalls
> Funktionen, die man nach p ableiten kann.
>    
> Hier komme ich leider auch nicht weiter.

Das lässt sich mit einer Kombination aus Produkt- und Kettenregel ableiten.

>  
> i)
> [mm]L(x)=-\bruch{n}{2}ln(2\pi)-\bruch{n}{2}ln\lambda^2-\bruch{1}{2\lambda^2}(\mu-x)^2[/mm]
>  
> bei der Ableitung fallen ja die ersten 2 teile weg,da dort
> keine x gibt,also muss ich folgendes ableiten:  

Ja, falls die Ableitung nach x gemeint ist. Mache das bitte in Zukunft immer kenntlich.

> [mm]-\bruch{1}{2\lambda^2}(\mu-x)^2[/mm]
>  
> und jetzt weiß ich wieder nicht mehr weiter.

Na wo hängts denn? Der Faktor vor der Klammer ist konstant und braucht somit beim Ableiten nicht beachtet zu werden. Der Rest lässt sich ganz normal mit Potenzregel ableiten. Im Zweifelsfall kannst Du auch noch die Klammer ausmultiplizieren.

>  
> würd mich über jede Hilfe freuen.
>  vielen dank im voraus.
>  
> Mfg
>  danyal


Gruß,

notinX

Bezug
                
Bezug
Ableitungen: Korrektur u. Idee
Status: (Frage) beantwortet Status 
Datum: 12:23 Do 15.09.2011
Autor: mathegenie_90

Hallo und vielen dank für die Hilfe.

nun habe ich bei einigen teilaufgaben versucht neue Ansätze zu entwickeln,bei manchen ist dies mir auch trotz der tipps nicht gelungen,wie folgt:

> > e) [mm]h(r)=\wurzel{r}*θ[/mm] -ln((θ-r)/r)
>  >      [mm]h'(r)=-\bruch{1}{2r*\wurzel{x}}+[/mm]       hier komme
> ich
> > jetzt nicht mehr weiter

dann wäre mein neuer Ansatz folgendermaßen:

h'(r)= [mm] \bruch{1}{2\wurzel{r}}- \bruch{1}{r} [/mm]
ist das nun korrekt so?ab dem - Zeichen bin ich mir eigentlich unsicher gewesen.

> > f) [mm]u(s)=e^{As^{2}-Bs-C}*(D-s)[/mm]
>  >     [mm]u'(s)=2e^{As-B}*(D-s)+e^{As^{2}-Bs-C}*(-1)[/mm]
>  
> Hier hast Du die Kettenregel nicht richtig angewendet. Was
> ergibt denn [mm]\frac{\partial}{\partial s}e^{As^{2}-Bs-C}=[/mm]?

hier komme ich leider immer noch nicht weiter, denn ich weiß nicht wie ich das sonst ableiten müsste.

> > g) Bilden Sie folgende Ableitung
>  >    
> >
> > [mm]G(q_{3})=(A-B *\summe_{i=1}^{13}*q_{i})q_{3}-\bruch{1}{3}q^2_3[/mm]
>  
> >  

> > hier fehlt mir auch jeglicher Ansatz.G
>  
> Schreib das mal um, vielleicht wirds dann leichter:
>  
> [mm]G(q_{3})=\left(A-B\cdot\sum_{i=1}^{13}q_{i}\right)q_{3}-\frac{1}{3}q_{3}^{2}=\left(A-B\cdot\sum_{i=1}^{2}q_{i}-Bq_{3}-B\cdot\sum_{i=4}^{13}q_{i}\right)q_{3}-\frac{1}{3}q_{3}^{2}[/mm]
>

sry aber es wurde nicht leichter,ich komme einfach nicht weiter.

> > h) f(p)=pD(p)-K(D(p)). Hier sind K und D ebenfalls
> > Funktionen, die man nach p ableiten kann.

  

> Das lässt sich mit einer Kombination aus Produkt- und
> Kettenregel ableiten.

neuer Ansatz:  f(p)=1*D(p)+p*(D(p))'-........ da weiß ich nicht mehr weiter.
  

> > i)

> [mm]L(x)=-\bruch{n}{2}ln(2\pi)-\bruch{n}{2}ln\lambda^2-\bruch{1}{2\lambda^2}(\mu-x)^2[/mm]
>  
> > [mm]-\bruch{1}{2\lambda^2}(\mu-x)^2[/mm]

neuer Ansatz:

L'(x)= [mm] -\bruch{1}{2\lambda^2}*2(\mu-x)*(-1) [/mm]

ist das jetzt korrekt so??


würd mich über jede Hilfe freuen.
vielen dank im voraus.

mfg
danyal


Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:05 Do 15.09.2011
Autor: leduart

Hallo


> nun habe ich bei einigen teilaufgaben versucht neue
> Ansätze zu entwickeln,bei manchen ist dies mir auch trotz
> der tipps nicht gelungen,wie folgt:
>  
> > > e) [mm]h(r)=\wurzel{r}*θ[/mm] -ln((θ-r)/r)
>  >  >      [mm]h'(r)=-\bruch{1}{2r*\wurzel{x}}+[/mm]       hier
> komme
> > ich
> > > jetzt nicht mehr weiter
>  
> dann wäre mein neuer Ansatz folgendermaßen:
>  
> h'(r)= [mm]\bruch{1}{2\wurzel{r}}- \bruch{1}{r}[/mm]

leider falsch. du brauchst die kettenregel für den ln:
[mm] (ln(f(x)))'=\bruch{1}{f(x)}*f'(x) [/mm]
dein f(r) ist dabei f(r)=(θ-r)/r

>  ist das nun
> korrekt so?ab dem - Zeichen bin ich mir eigentlich unsicher
> gewesen.
>  
> > > f) [mm]u(s)=e^{As^{2}-Bs-C}*(D-s)[/mm]
>  >  >     [mm]u'(s)=2e^{As-B}*(D-s)+e^{As^{2}-Bs-C}*(-1)[/mm]
>  >  
> > Hier hast Du die Kettenregel nicht richtig angewendet. Was
> > ergibt denn [mm]\frac{\partial}{\partial s}e^{As^{2}-Bs-C}=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

?

>  
> hier komme ich leider immer noch nicht weiter, denn ich
> weiß nicht wie ich das sonst ableiten müsste.

Kettenregel:(e^{f(x)))'=e^{f(x)}*f'(x) hier f(x)= Ax^2-Bx-C

> > > g) Bilden Sie folgende Ableitung
>  >  >    
> > >
> > > [mm]G(q_{3})=(A-B *\summe_{i=1}^{13}*q_{i})q_{3}-\bruch{1}{3}q^2_3[/mm]
>  
> >  

> > >  

> > > hier fehlt mir auch jeglicher Ansatz.G
>  >  
> > Schreib das mal um, vielleicht wirds dann leichter:
>  >  
> >
> [mm]G(q_{3})=\left(A-B\cdot\sum_{i=1}^{13}q_{i}\right)q_{3}-\frac{1}{3}q_{3}^{2}=\left(A-B\cdot\sum_{i=1}^{2}q_{i}-Bq_{3}-B\cdot\sum_{i=4}^{13}q_{i}\right)q_{3}-\frac{1}{3}q_{3}^{2}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  >

> sry aber es wurde nicht leichter,ich komme einfach nicht
> weiter.

da steht (irgendwas ohne q_3)*q_3 abgeleitet einfach (irgendwas ohne q_3)
den 2 ten summanden kannst du selbst.
mach dir eben immer um Faktoren, die nicht den parameter nachdem du ableiten sollst  nen kringel und nenn das ganze vorläufig A
dann wäre obige aufgabe G(q_3)=A*q_3-1/3*q_3^3 was du sicher kannst.
lass dich nicht davon irritieren, wie kompliziert dein "A" ist, das kann entsetzlich aussehen, bleibt aber einfach ne komplizierte "Konstante"

>  > > h) f(p)=pD(p)-K(D(p)). Hier sind K und D ebenfalls

> > > Funktionen, die man nach p ableiten kann.
>  
>
> > Das lässt sich mit einer Kombination aus Produkt- und
> > Kettenregel ableiten.
>  
> neuer Ansatz:  f(p)=1*D(p)+p*(D(p))'-........ da weiß ich
> nicht mehr weiter.

der erste Teil ist richtig. (K(D(p)))'=K'(D(p))*D'(p)
im zweifelsfall stell dir unter K und D erstmal konkrete funktionen vor, z. Bsp K=cos D=\wurzel  dann müsstest du cos(\wurzel{p}} mit der kettenregel ableiten.

> > > i)
>
> >
> [mm]L(x)=-\bruch{n}{2}ln(2\pi)-\bruch{n}{2}ln\lambda^2-\bruch{1}{2\lambda^2}(\mu-x)^2[/mm]
>  >  
> > > [mm]-\bruch{1}{2\lambda^2}(\mu-x)^2[/mm]
>  
> neuer Ansatz:
>  
> L'(x)= [mm]-\bruch{1}{2\lambda^2}*2(\mu-x)*(-1)[/mm]
>  
> ist das jetzt korrekt so??

Das ist richtig!
gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]