www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAbleitungen +Grenzwerte
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Ableitungen +Grenzwerte
Ableitungen +Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen +Grenzwerte: korregieren / helfen
Status: (Frage) beantwortet Status 
Datum: 22:08 Mi 08.02.2006
Autor: h-allo

Aufgabe
FUNKTION = (x²-2x) * e^-x

Berechnen =
a) 1.Ableitung
b) 2.Ableitung
c) 3Ableitung
d) Grenzwerte

Bei der 1.Ableitung habe ich hier :

e^-x (4x-2-1x²)

raus!

Und bei der zweiten

e^-x (-6x +6 +1x²)

raus!

und bei der 3ten

e^-x (8x-1x²)

raus !

kann mir jemand sagen ob das richtig ist , dass wäre echt voll nett!!!

Und noch eine kleine Bitte kann mir jemand sagen wie ich hier
[mm] \limes_{n\rightarrow\infty} [/mm]   und Lin gegen -unendlich mache ?

Ich habe mir das schon öfters erklären lassen, aber verstehe es einfach nicht !!

VIELEN DANK FÜR EURE HILFE !!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt



        
Bezug
Ableitungen +Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Mi 08.02.2006
Autor: Schneeflocke

Hallo h-allo! :)
Deine erste und zweite Ableitung ist richtig! Bei der dritten hast du vergessen das Minuszeichen bei der 6 in die Klammer zu ziehen! Rechne nochmal nach, dann merkst du es!
Es kommt dann raus: f'''(x) = [mm] e^-x*(-x^2+8x-12)! [/mm]
Bei dem Grenzwert kann ich dir nur teilweise helfen, frag also nochmal, damit deine antwort nicht als "beantwortet" abgehakt wird!
Wenn du [mm] \limes_{n\rightarrow\infty} [/mm] setzt kommt ja, wenn man  [mm] \infty [/mm] in x einsetzten würde [mm] 0*\infty [/mm] raus! Das ist ein Problemfall, den man auch nicht durch l'Hospital lösen kann! Weiß ich im moment auch nicht weiter!  Aber wenn du - [mm] \infty [/mm] einsetzt, siehst du, dass beide Faktoren des Produkts deiner Funktion gegen  [mm] \infty [/mm] gehen! Also hast du dann [mm] \infty [/mm] ^2 , also die Funktion geht für lim gegen [mm] -\infty [/mm] sehr schnell gegen [mm] \infty! [/mm] (oder: "hat den Grenzwert [mm] \infty! [/mm] ")

Vielleicht fragst du dich jetzt, wie man das "sieht"? Am besten ist es, wenn du einfach die zwei "Teilfunktionen" deiner Funktion, also e^-x und      [mm] (x^2-2x) [/mm] einzeln betrachtest! Sie sind ja gleichzeitig  die zwei Faktoren des Produkts! Wenn du dir jetzt die e-Funktion als Graph vorstellst ( Umkehrfunktion von lnx) siehst du schon, das sie für x= [mm] \infty [/mm] gegen [mm] \infty [/mm] geht! beim  2. Faktor [mm] (x^2-2x) [/mm] ist es ja klar!

Ich hoffe, du verstehst was ich dir erklären will!
Wegen fall x gegen [mm] \infty [/mm] schau ich nochmal nach!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]