www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitungen und Extremwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Ableitungen und Extremwerte
Ableitungen und Extremwerte < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen und Extremwerte: Komme nicht weiter
Status: (Frage) überfällig Status 
Datum: 14:45 Do 02.11.2006
Autor: ragnar79

Aufgabe
Erste Aufgabe:

[mm] y=\bruch{x^{2}}{x-1} [/mm]

Bestimmen Sie die Extremwerte

Die Lösung soll sein: Min (2/4) und Min (0,0)

Ich habe schon Probleme mit der ersten Ableitung:

Ich wende die Quotientenregel an und erhalte:

y'= [mm] \bruch{2x(x-1)-x^{2*1}}{(x-1)^2} [/mm]

=>

y'= [mm] \bruch{2x^2-2x-x^2}{(x-1)^2} [/mm]

[mm] =>\bruch{x^2-2x}{x^2-2x+1} [/mm]

Wenn ich jetzt kürze bleibt ja unten nur die 1. Was macht ich denn da falsch?

Die Frage hab ich nur hier gestellt und würde mich mal wieder über Hilfe freuen

        
Bezug
Ableitungen und Extremwerte: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 15:00 Do 02.11.2006
Autor: M.Rex


> Erste Aufgabe:
>  
> [mm]y=\bruch{x^{2}}{x-1}[/mm]
>  
> Bestimmen Sie die Extremwerte
>  Die Lösung soll sein: Min (2/4) und Min (0,0)
>  
> Ich habe schon Probleme mit der ersten Ableitung:
>  
> Ich wende die Quotientenregel an und erhalte:
>  
> y'= [mm]\bruch{2x(x-1)-x^{2}*1}{(x-1)^2}[/mm]
>  
> =>
>  
> y'= [mm]\bruch{2x^2-2x-x^2}{(x-1)^2}[/mm]
>  
> [mm]=>\bruch{x^2-2x}{x^2-2x+1}[/mm]

Bis hierhin richtig.

>  
> Wenn ich jetzt kürze bleibt ja unten nur die 1. Was macht
> ich denn da falsch?

Ganz dicker Patzer!!! Aus Summen darfst du nicht Kürzen!!!!

Die möglichen Extrempunkte sind ja die Nullstellen der ersten Ableitung, also
[mm] \bruch{x²-2x}{x^2-2x+1}=0 [/mm]
[mm] \gdw [/mm] x²-2x=0
[mm] \gdw [/mm] x(x-2)=0

Jetzt gilt: f(0)=0 und f(2)=4.

Bleibt moch zu prüfen, ob Hoch oder Tiefpunkte:

Dazu brauchst du die zweite Ableitung:

[mm] y'=\bruch{x^2-2x}{x^2-2x+1}=\bruch{x^2-2x}{(x-1)²} [/mm]
[mm] y''=\bruch{(2x-2)*(2(x-1))-[(x²-2x)(x-1)²]}{(x-1)^{4}} [/mm]
[mm] =\bruch{(x-1)[2(2x-2)-(x²-2x)*(x-1)]}{(x-1)^{4}} [/mm]
[mm] =\bruch{4x-2-[x³-2x²-x²+2x]}{(x-1)³} [/mm]

Wenn du den Zahler noch ein Wenig vereinfachst, sollte die Frage, ob es Minima oder Maxima sind, kein Problem darstellen.

Marius


Bezug
                
Bezug
Ableitungen und Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Do 02.11.2006
Autor: ragnar79


> Die möglichen Extrempunkte sind ja die Nullstellen der
> ersten Ableitung, also
>  [mm]\bruch{x²-2x}{x^2-2x+1}=0[/mm]
>  [mm]\gdw[/mm] x²-2x=0
>  [mm]\gdw[/mm] x(x-2)=0
>  
> Jetzt gilt: f(0)=0 und f(2)=4.


Marius, vielen vielen Dank für Deine Mühe, find ich sowas von Klasse.

Wie komme ich aber genau von der Ableitung auf  

[mm]\gdw[/mm] x²-2x=0
[mm]\gdw[/mm] x(x-2)=0

um die Nullstellen zu bestimmen, kann die umformungen nicht nachvollziehen.

Bezug
                        
Bezug
Ableitungen und Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Do 02.11.2006
Autor: MontBlanc

Hi,

also zu deiner Frage:

[mm] x^{2}-2x=0 [/mm] , da kannst du doch x ausklammern, dann steht da:

$ x*(x-2)=0 $ das hilft dir einfach nur dabei, die Nullstellen zu bestimmen,

nämlich 2 und 0 =)

Bis denn

Bezug
                
Bezug
Ableitungen und Extremwerte: Korrekturmitteilung
Status: (Korrektur) Korrekturmitteilung Status 
Datum: 17:27 Do 02.11.2006
Autor: Stefan-auchLotti

[mm] \text{Hi,} [/mm]

> Dazu brauchst du die zweite Ableitung:
>
> $ [mm] y'=\bruch{x^2-2x}{x^2-2x+1}=\bruch{x^2-2x}{(x-1)²} [/mm] $
> $ [mm] y''=\bruch{(2x-2)\cdot{}(2(x-1))-[(x²-2x)(x-1)²]}{(x-1)^{4}} [/mm] $
> $ [mm] =\bruch{(x-1)[2(2x-2)-(x²-2x)\cdot{}(x-1)]}{(x-1)^{4}} [/mm] $
> $ [mm] =\bruch{4x-2-[x³-2x²-x²+2x]}{(x-1)³} [/mm] $

[mm] \text{Hast dich bei der zweiten Ableitung ein wenig vertan.} [/mm]

[mm] $\left(\bruch{u}{v}\right)'=\bruch{u'*v-u*v'}{v^2}$ [/mm]

[mm] \text{und nicht} [/mm]

[mm] $\left(\bruch{u}{v}\right)'=\bruch{u'*v'-u*v}{v^2}$ [/mm]

[mm] \text{Muss jetzt leider weg, ihr könnt ja noch einmal darüber gucken.} [/mm]

[mm] \text{Gruß, Stefan.} [/mm]

Bezug
                        
Bezug
Ableitungen und Extremwerte: Korrekturmitteilung
Status: (Korrektur) Korrekturmitteilung Status 
Datum: 19:42 Do 02.11.2006
Autor: ragnar79

  Ok wie ich zu  [mm]\bruch{x²-2x}{x^2-2x+1}=0[/mm] komme ist mir klar.
Wie komme ich aber von dem Bruch [mm]\bruch{x²-2x}{x^2-2x+1}=0[/mm]  nach [mm]\gdw[/mm] x²-2x=0  Was pasiert mit der 1 im Zähler. Also wie kann es das ich bei der weiteren Vereinfachung zur Nullstellenbestimmung nur noch
x²-2x=0 übrigbleibt.   Das Ausklammern nach [mm]\gdw[/mm] x(x-2)=0 ist nachvollziehbar.


Bezug
        
Bezug
Ableitungen und Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:00 Sa 04.11.2006
Autor: Stefan-auchLotti

[mm] \text{Hi noch mal,} [/mm]

> Ok wie ich zu  $ [mm] \bruch{x²-2x}{x^2-2x+1}=0 [/mm] $ komme ist mir klar.
> Wie komme ich aber von dem Bruch $ [mm] \bruch{x²-2x}{x^2-2x+1}=0 [/mm] $  nach $ [mm] \gdw [/mm] $ x²-2x=0  Was
> pasiert mit der 1 im Zähler. Also wie kann es das ich bei der
> weiteren Vereinfachung zur Nullstellenbestimmung nur noch
> x²-2x=0 übrigbleibt.   Das Ausklammern nach $ [mm] \gdw [/mm] $ x(x-2)=0 ist nachvollziehbar.

[mm] \text{Einfach die Gleichung mit den Nenner multiplizieren. 0 mal irgendwas bleibt 0.} [/mm]

[mm] \text{Gruß, Stefan.} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]