www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbleitungsregeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Ableitungsregeln
Ableitungsregeln < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsregeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Do 31.03.2011
Autor: Mathintosh

Aufgabe
In welchen Punkten der Kurve ist die Tangente parallel zur Geraden g?

k(x) = 2x/(x+2) ; g(x) = -6x+1

moin,

Ich komme mit der obenstehenden Aufgabe nicht klar. Ich denke man muss von k(x) die 1. Ableitung machen und dan mit g(x) gleichsetzen?

Danke für die Hilfe.

        
Bezug
Ableitungsregeln: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Do 31.03.2011
Autor: schachuzipus

Hallo Mathintosh,

> In welchen Punkten der Kurve ist die Tangente parallel zur
> Geraden g?
>
> k(x) = 2x/(x+2) ; g(x) = -6x+1
> moin,
>
> Ich komme mit der obenstehenden Aufgabe nicht klar. Ich
> denke man muss von k(x) die 1. Ableitung machen [ok] und dan mit
> g(x) gleichsetzen?

Nein, Tangente parallel zu g bedeutet doch, dass Tangente und Gerade g dieselbe Steigung haben.

Setze also gleich mit der Steigung von g. Die kannst du doch aber ablesen ...

Ermittle also alle Punkte, für die gilt [mm] $k'(x)=m_g$ [/mm]

>
> Danke für die Hilfe.

Gruß

schachuzipus


Bezug
                
Bezug
Ableitungsregeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Do 31.03.2011
Autor: Mathintosh

Danke für die Antwort.

Ich habe k'(x)=m(g) gleichgesetzt.

Ich erhalte aber nicht die Lösung in meinem Skript (Lös.= P1(-1|2), P2(-3|-18).

für k'(x) habe ich erhalten: [mm] (2x^2+8x)/(x+2)^2 [/mm]
Ich nehme an, es ist falsch (?)


Bezug
                        
Bezug
Ableitungsregeln: Ableitung falsch
Status: (Antwort) fertig Status 
Datum: 14:40 Do 31.03.2011
Autor: Roadrunner

Hallo Mathintosh!


Du hast Recht: Deine Ableitung stimmt nicht. Bitte rechne hier mal vor.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Ableitungsregeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Do 31.03.2011
Autor: Mathintosh

k(x)= [mm] 2x^2/(x+2) [/mm] --> g(x)/h(x)

g(x)= [mm] 2x^2 [/mm]  g'(x)= 4x
h(x)= x+2   h'(x)= 1

k'(x)= [(x+2)*4x - [mm] 2x^2*1]/(x+2)^2 [/mm]


Bezug
                                        
Bezug
Ableitungsregeln: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Do 31.03.2011
Autor: angela.h.b.


> k(x)= [mm]2x^2/(x+2)[/mm] --> g(x)/h(x)

Hallo,

das ist jetzt aber eine andere Funktion k als die von Dir eingangs gepostete!

>  
> g(x)= [mm]2x^2[/mm]  g'(x)= 4x
>  h(x)= x+2   h'(x)= 1
>  
> k'(x)= [(x+2)*4x - [mm]2x^2*1]/(x+2)^2[/mm]

Das ist richtig.

Jetzt mußt Du ausrechnen, für welche x gilt k'(x)=-6.

Gruß v. Angela

>  


Bezug
                                        
Bezug
Ableitungsregeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Do 31.03.2011
Autor: schachuzipus

Hallo nochmal,

mit der "neuen" Funktion passt deine Ableitung und deren Zusammenfassen aus dem oberen post.

Du wirst dich beim Lösen der Gleichung verrechnet haben.

Rechne nochmal nach bzw. hier vor, wenn du nicht auf die Musterlösung kommst...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]