www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAbschätzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Abschätzen
Abschätzen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Mi 22.08.2007
Autor: crexe

Aufgabe
[mm] \integral_{1}^{\infty}{\ln(x)/(x*\wurzel{x^2-1}) dx} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


habe hier ein Problem bei der Abschätzung (was im Punkt x=1 passiert ist mir klar):



[mm] \integral_{\wurzel{2}}^{\infty}{\ln(x)/(x*\wurzel{x^2-1}) dx}<\wurzel{2}*\integral_{\wurzel{2}}^{\infty}{\ln(x)/(x^2) dx}<\integral_{\wurzel{2}}^{\infty}{\wurzel{x}/(x^2) dx} [/mm]

bei beiden abschätzungen ist mir nicht ganz klar was passiert, sonst is das Beispiel logisch (die Konvergenz des Integrals ist zu zeigen).

danke im voraus

mfg

        
Bezug
Abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Mi 22.08.2007
Autor: Somebody


> [mm]\integral_{1}^{\infty}{\ln(x)/(x*\wurzel{x^2-1}) dx}[/mm]
>  Ich
> habe diese Frage in keinem Forum auf anderen Internetseiten
> gestellt.
>
>
> habe hier ein Problem bei der Abschätzung (was im Punkt x=1
> passiert ist mir klar):
>  
>
>
> [mm]\integral_{\wurzel{2}}^{\infty}{\ln(x)/(x*\wurzel{x^2-1}) dx}<\wurzel{2}*\integral_{\wurzel{2}}^{\infty}{\ln(x)/(x^2) dx}<\integral_{\wurzel{2}}^{\infty}{\wurzel{x}/(x^2) dx}[/mm]
>  
> bei beiden abschätzungen ist mir nicht ganz klar was
> passiert, sonst is das Beispiel logisch (die Konvergenz des
> Integrals ist zu zeigen).
>  

Ich verstehe nicht, weshalb man diese Abschätzung zum Nachweis der Konvergenz des Integrals an der oberen Grenze überhaupt so spezifisch machen sollte. Wegen
[mm]\lim_{x\rightarrow +\infty}\frac{\frac{\ln(x)}{x\sqrt{x^2-1}}}{\frac{\ln(x)}{x^2}}=\lim_{x\rightarrow +\infty}\frac{x^2}{x^2\sqrt{1-\frac{1}{x^2}}}=1[/mm]

sind [mm] $\frac{\ln(x)}{x\sqrt{x^2-1}}$ [/mm] und [mm] $\frac{\ln(x)}{x^2}$ [/mm] für den Grenzübergang [mm] $x\rightarrow +\infty$ [/mm] asymptotisch gleich, d.h. es gibt jedenfalls ein [mm] $x_0$ [/mm] und eine Konstante $k>1$, so dass für alle [mm] $x\geq x_0$ [/mm] gilt:
[mm]0\leq \frac{\ln(x)}{x\sqrt{x^2-1}}
Das genügt für den Nachweis, dass das Integral von [mm] $\frac{\ln(x)}{x\sqrt{x^2-1}}$ [/mm] an der oberen Grenze [mm] $+\infty$ [/mm] jedenfalls konvergiert, falls das Integral von [mm] $\frac{\ln(x)}{x^2}$ [/mm] an derselben oberen Grenze konvergiert.

Besser als dieser Zwischenschritt wäre gleich zu zeigen, dass
[mm]\lim_{x\rightarrow +\infty}\frac{\frac{\ln(x)}{x\sqrt{x^2-1}}}{\frac{\sqrt{x}}{x^2}}=\lim_{x\rightarrow +\infty}\frac{\ln(x)\cdot x^2}{\sqrt{x}\cdot x^2\cdot\sqrt{1-\frac{1}{x^2}}}=\lim_{x\rightarrow +\infty}\frac{\ln(x)}{\sqrt{x}}=0[/mm]

weshalb ab einem gewissen [mm] $x_0$ [/mm] gelten muss, dass
[mm]0\leq \frac{\ln(x)}{x\sqrt{x^2-1}} < \frac{\sqrt{x}}{x^2}[/mm]

so dass man das Integral von [mm] $\frac{\ln(x)}{x^2}$, [/mm] das in Deiner Abschätzung dazwischengeschaltet war, gleich weglassen kann. [mm] $x_0$ [/mm] braucht man nicht zu kennen, es genügt zu wissen, dass es ein solches [mm] $x_0$ [/mm] gibt: das genügt für den Nachweis der Konvergenz an der oberen Grenze [mm] $+\infty$. [/mm]


Bezug
                
Bezug
Abschätzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Mi 22.08.2007
Autor: crexe

vielen dank für die schnelle antwort.
diese abschätzungen stammen aus der musterlösung dieses beispiels, und ich hab einfach ned genau mitkriegt wie hier abgeschätzt wird.

mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]