www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesAbschätzen von Kettenbrüchen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Abschätzen von Kettenbrüchen
Abschätzen von Kettenbrüchen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzen von Kettenbrüchen: Abschätzen von Kettebrüchen
Status: (Frage) beantwortet Status 
Datum: 00:53 Di 27.12.2005
Autor: hallo12345

Hallo!

Im folgenden bezeichne [mm][b][/mm] für ein reelles [mm]b[/mm] die näcstkleinere ganze Zahl (floor).

Es wäre schön, wenn mir ein Zahlentheoretiker bei der folgenden Frage helfen könnte:

Es ist eine Abbildung [mm]F: R^+\to R^+[/mm] gegeben mit der Eigenschaft, dass
[mm]F(b)=[b]+\frac{[b]}{2*F(b)}.[/mm]

Die zugehörige Kettenbruchentwicklung ist [mm]F(b)=[[b],2,[b],2,...] [/mm].

Meine Frage ist nun:

Wieso ist [mm]\limes_{b\rightarrow\infty}F(b)-[b]=1/2[/mm] und wieso ist [mm]F(b)-[b][/mm] monoton wachsend?

Danke!Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abschätzen von Kettenbrüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Di 27.12.2005
Autor: mathiash

Hallo,

mag sein, dass ich etwas missinterpretiere, aber kann es sein, dass Du die Aufgabenstellung nicht richtig wiedergibst ? Fuer Dein F gilt sicherlich

[mm] F(b)\geq [/mm] b-1 , also insbesondere nicht [mm] \lim_{b\to\infty} F(b)=1\slash [/mm] 2,

und die Funktionsgleichung kann man - als quadr. Gl. - explizit loesen.

Gruss,

Mathias

Bezug
                
Bezug
Abschätzen von Kettenbrüchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Di 27.12.2005
Autor: hallo12345

Ups, danke, ich meine
[mm] \limes_{b\rightarrow\infty} [/mm] F(b)-[b]=1/2


Aber die Frage bleibt...wieso giltdas? Danke!

Bezug
        
Bezug
Abschätzen von Kettenbrüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:20 Mi 28.12.2005
Autor: mathiash

Hallo,

also an Deiner Funktionsgleichung scheint sich ja laut Deiner letzten Antwort nichts
geaendert zu haben:

F(b) = [mm] \lfloor b\rfloor [/mm] + [mm] \frac{\lfloor b\rfloor}{2\cdot F(b)} [/mm]

Stellen wir dies um und betrachten fuer einen Moment mal nur ganzzahlige b, so soll also
fuer diese gelten:

  [mm] (F(b))^2 -F(b)\cdot [/mm] b [mm] -\frac{b}{2}=0 [/mm]

und man bekommt

  F(b) [mm] =\frac{b}{2} [/mm] + [mm] \sqrt{\frac{b^2}{4}+\frac{1}{2}} [/mm]

(da F(b) [mm] \geq [/mm] 0  gelten soll).

Also gilt

  F(b)-b [mm] =\sqrt{\frac{b^2}{4}+\frac{1}{2}}-\sqrt{\frac{b^2}{4}} [/mm]

was wohl gegen [mm] \sqrt{1\slash 2} [/mm] konvergiert.

Wenn es dies fuer ganzzahlige Werte tut, so auch für reelle Werte.

Weiterhin sieht man aus der Funktionsgleichung sofort die Monotonie.

Gruss,

Mathias

Bezug
                
Bezug
Abschätzen von Kettenbrüchen: Tippfehler?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:31 Mi 28.12.2005
Autor: Loddar

Hallo Mathias!


Muss es hier nicht heißen (nach Anwendung der p/q-Formel):

$F(b) \ [mm] =\frac{b}{2} [/mm] + [mm] \sqrt{\frac{b^2}{4}+\frac{\red{b}}{2}}$ [/mm]


Ansonsten komme ich für $F(b)-b_$ auch nicht auf den ganannten Grenzwert von [mm] $\bruch{1}{2}$ [/mm] .


Gruß
Loddar


Bezug
                        
Bezug
Abschätzen von Kettenbrüchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:54 Mi 28.12.2005
Autor: mathiash

Hallo Loddar,

ja natuerlich, [mm] b\slash [/mm] 2 anstelle [mm] 1\slash [/mm] 2      !!!

Aber ist denn dann nicht fuer ganzzahlige b

F(b)-b = [mm] \sqrt{\frac{b^2}{4}+\frac{b}{2}}-\sqrt{\frac{b^2}{4}}= [/mm]

= [mm] \sqrt{\frac{b^2}{4}\cdot (1+\frac{2}{b})}-\sqrt{\frac{b^2}{4}} [/mm]

was gegen 0 gehen sollte.

(Oder heisst Dein ''ansonsten'', dass Du trotz der Korrektur nicht auf [mm] \frac{1}{2} [/mm] kommst ?)

Gruss,

Mathias

Bezug
                                
Bezug
Abschätzen von Kettenbrüchen: Alles okay jetzt!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:33 Mi 28.12.2005
Autor: Loddar

Guten Morgen Mathias!


Nein, nein! Nun ist alles okay! Ohne die o.g. Korrektur habe ich den Grenzwert [mm] $\bruch{1}{2}$ [/mm] "verfehlt" ...


Mit der Korrektur klappt es wunderbar (Tipp an hallo: Term gemäß 3. binomischer Formel erweitern).


Gruß
Loddar


Bezug
                                        
Bezug
Abschätzen von Kettenbrüchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:51 Mi 28.12.2005
Autor: mathiash

Mea maxima culpa.

Loddar, Du hast natuerlich recht.

Gruss,

Mathias

Bezug
                                                
Bezug
Abschätzen von Kettenbrüchen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 Mi 28.12.2005
Autor: hallo12345

Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]