Abschätzung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:37 Do 28.02.2013 | Autor: | melodie |
Aufgabe | sei [mm] x_{*} [/mm] die Nullstelle des reelen Polynoms P(x) [mm] =a_nx^n +a_{n-1}x^{n-1} [/mm] + ... + [mm] a_1x^{n-1}x+a_0
[/mm]
Zeigen SIe die Abschätzung [mm] |x_{*}| [/mm] < [mm] \bruch{ |a_n| +|a_{n-1}|+...+|a_1|+|a_0| }{ |a_n|} [/mm]
Hinweis: Betrachten die die Fälle [mm] |x_{*}| [/mm] < 1 und [mm] |x_{*}| \ge [/mm] 1 |
Wie zeige ich eine Abschätzung und wie kann den Hinweis hier benutzen?
|
|
|
|
Hallo,
> sei [mm]x_{*}[/mm] die Nullstelle des reelen Polynoms P(x) [mm]=a_nx^n +a_{n-1}x^{n-1}[/mm]
> + ... + [mm]a_1x^{n-1}x+a_0[/mm]
>
> Zeigen SIe die Abschätzung [mm]|x_{*}|[/mm] < [mm]\bruch{ |a_n| +|a_{n-1}|+...+|a_1|+|a_0| }{ |a_n|}[/mm]
> Hinweis: Betrachten die die Fälle [mm]|x_{*}|[/mm] < 1 und [mm]|x_{*}| \ge[/mm]
> 1
> Wie zeige ich eine Abschätzung und wie kann den Hinweis
> hier benutzen?
Der Fall [mm] $x_{*} [/mm] = 0$ kann ignoriert werden, weil dann die Ungleichung trivialerweise erfüllt ist (zumindest suggeriert das bereits die zu zeigende Aussage, weil [mm] $|a_n|\not= [/mm] 0$).
Der Hinweis wird vermutlich in folgender Form benutzt werden: Ist [mm] $|x_{*}| [/mm] < 1$, so folgt $... < [mm] |x_{*}|^3 [/mm] < [mm] |x_{*}|^2 [/mm] < [mm] |x^{*}|$.
[/mm]
Andersherum: Aus [mm] $|x_{*}| \ge [/mm] 1$ folgt $... [mm] \ge |x_{*}|^3 \ge |x_{*}|^2 \ge |x^{*}|$.
[/mm]
----
Für den Beweis würde ich anfangen mit der Eigenschaft [mm] $P(x_{*}) [/mm] = 0$. Im Falle [mm] $|x_{*}| \ge [/mm] 1$ gilt dann:
$0 = [mm] a_n x_{*}^{n} [/mm] + [mm] a_{n-1} x_{*}^{n-1} [/mm] + [mm] a_1 x_{*} [/mm] + [mm] a_0$
[/mm]
du kannst folgern
[mm] $-a_n x_{*}^{n} [/mm] = [mm] a_{n-1} x_{*}^{n-1} [/mm] + [mm] a_1 x_{*} [/mm] + [mm] a_0$
[/mm]
Nun auf beiden Seiten Beträge nehmen und den Hinweis + Dreiecksungleichung benutzen. Evtl. kommst du damit weiter.
Viele Grüße,
Stefan
|
|
|
|