www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Abschätzung maximum-norm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Abschätzung maximum-norm
Abschätzung maximum-norm < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung maximum-norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Mi 02.05.2007
Autor: anitram

einen wunderschönen guten tag!

ich habe folgende Frage:

ich habe gerade gelesen, dass die [mm] \infty-Norm [/mm] der Grenzübergang der p-Norm ist.
wenn dem so ist, kann ich dann [mm] max|\summe_{k} x(t_{k})| [/mm]  (das maximum über die k)mit der Maximumsnorm [mm] \parallel x(t_{k}) \parallel_{\infty} [/mm] abschätzen??
ist  [mm] max|\summe_{k} x(t_{k})| \le \parallel x(t_{k}) \parallel _{\infty} [/mm] ???

wäre euch für eine antwort sehr dankbar!!

lg anitram


        
Bezug
Abschätzung maximum-norm: Antwort
Status: (Antwort) fertig Status 
Datum: 12:24 Mi 02.05.2007
Autor: wauwau

Es gilt

[mm]\limes_{p\rightarrow\infty} ||x(t_{k}||_{p} [/mm] = [mm] ||x(t_{k}||_{\infty}[/mm]

Also

[mm] \limes_{p\rightarrow\infty}(\summe_{i=1}^{n} x(t_{i})^{p})^\bruch{1}{p} [/mm] = [mm] max(x(t_{i})) [/mm]

Was möchtest du denn abschätzen???

Bezug
                
Bezug
Abschätzung maximum-norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 Mi 02.05.2007
Autor: anitram

hallo werner!

danke für deine schnelle antwort!

ich möchte ebrn gerade
[mm] max|\summe_{k} x(t_{k}) [/mm] mit der maximumsnorm abschätzen.
aber mir scheint, das geht nicht so einfach...
oder vielleicht doch???

lg anitram

Bezug
                        
Bezug
Abschätzung maximum-norm: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Mi 02.05.2007
Autor: wauwau

wenn du mit genauer angaben über die [mm] x(t_{k}) [/mm] und die k machst (endlichdimensional,....) machst (Vektorraum, Funktione,.....) dann vielleicht...

Bezug
                                
Bezug
Abschätzung maximum-norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Mi 02.05.2007
Autor: anitram

achherrje, da kennt sich ja wirklich niemand aus!

die [mm] t_{k} [/mm] sind die Stützstellen, also endlich viele, (k=0,1,...n), im intervall [a,b].

und in der Aufgabe geht es um den Interpolationsoperator

A:C[a,b] [mm] \to [/mm] P mit Ax:= [mm] \summe_{k=0}^{n}x(t_{k})L_{k} [/mm]  (wobei [mm] L_{k} [/mm] das k-te Lagrangesche Polynom ist)

und hier soll nun
[mm] \parallel [/mm] Ax [mm] \parallel_{\infty} \le n^{n+1} \parallel [/mm] x [mm] \parallel_{\infty} [/mm]

die [mm] L_{k} [/mm] hab ich bereits abgeschätzt mit den [mm] n^{n+1} [/mm]

jetzt fehlt mir eben ncoh der rest...

ich hoffe, dass das jetzt nicht noch verwirrender ist, als vorher!

lg anitram

Bezug
                                        
Bezug
Abschätzung maximum-norm: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Mi 02.05.2007
Autor: wauwau

wenn du die [mm] L_{k} [/mm] mit [mm] n^{n} [/mm] abgeschätzt hättest wäre die Gesamtabschätzung trivial...

Bezug
                                                
Bezug
Abschätzung maximum-norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 Mi 02.05.2007
Autor: anitram

vielen, vielen dank!

du hast mir die augen geöffnet! ;-)

lg antiram

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]