Abschätzung und Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:42 So 25.10.2015 | Autor: | Twixi |
Aufgabe | Es gelte x [mm] \oplus [/mm] y = [mm] (x+y)(1+\epsilon) [/mm] mit [mm] |\epsilon| \leq \epsilon^{*} [/mm] für alle Maschinenzahlen x und y. Seien nun Maschinenzahlen [mm] x_1,...,x_n [/mm] gegeben und sei durch
[mm] \tilde{s_1}=x_1, \tilde{s}_n=\tilde{s}_{n-1} \oplus x_n.
[/mm]
ein Algorithmus zur Berechnung der Summe [mm] s_n [/mm] = [mm] \sum\limit_{i=1}^n x_i [/mm] definiert.
a) Berechnen Sie für n=1,...,4 den absoluten Fehler [mm] f_n:=\tilde{s}_n-s_n. [/mm] Wie lässt sich dieser Fehler durch einen schönen von n abhängigen Term abschätzen? Sieht dieser so aus wie in Aufgabe b)?
b) Zeigen Sie: zerlegt man [mm] \tilde{s}_n=s_n+f_n, [/mm] so gilt für den absoluten Fehler
[mm] |f_n| \leq [(1+\epsilon^{*})^{n} [/mm] - 1] [mm] \sum\limits_{i=1}^nx_i
[/mm]
c) In dieser Aufgabe werden wir sehen, dass die berechnete Lösung gleich der exakten Lösung von leicht gestörten Eingabedaten [mm] x_i(1+\delta_i) [/mm] ist. Zeigen Sie, dass
[mm] \tilde{s}_n [/mm] = [mm] \sum\limit_{i=1}^nx_i(1+\delta_i) [/mm] mit [mm] (1-\epsilon^{*})^n-1\leq \delta_i \leq (1+\epsilon^{*})^n-1
[/mm]
und falls [mm] n\epsilon^{*} \le [/mm] 1 gilt:
[mm] |\delta_i| \leq \frac{n\epsilon^{*}}{1-n\epsilon^{*}}, [/mm] i=1,...,n. |
Hallo liebe Community,
ich komme bei obiger Aufgabe nicht weiter und würde mich sehr über Hilfe freuen.
Für a) bin ich auf folgende absolute Fehler gekommen:
[mm] f_1 [/mm] = 0, [mm] f_2 [/mm] = [mm] (x_1 [/mm] + [mm] x_2)\cdot{}(-\epsilon), f_3 [/mm] = [mm] (x_1 [/mm] + [mm] x_2 [/mm] + [mm] x_3)\cdot{}(-\epsilon_1 -\epsilon_2),
[/mm]
[mm] f_4 [/mm] = [mm] (x_1 [/mm] + [mm] x_2 [/mm] + [mm] x_3 [/mm] + [mm] x_4)\cdot{}(-\epsilon_1 -\epsilon_2 -\epsilon_3)
[/mm]
Ich komme jedoch nicht darauf, wie ich sich dies durch einen "schönen von n abhängigen Term" abschätzen lässt.
Für b) und c) fehlt mir jeweils der Induktionsschritt.
Vielen lieben Dank im Voraus!
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:21 Di 27.10.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|