www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenAbschluss einer Teilmenge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Abschluss einer Teilmenge
Abschluss einer Teilmenge < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschluss einer Teilmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Di 20.04.2010
Autor: anetteS

Aufgabe
Geben Sie ein Beispiel an für: Eine echte Teilmenge M von [mm] \IR, [/mm] deren Abschluss ganz  [mm] \IR [/mm] ist.

Hallo, ich bins mal wieder;-).
Wir hatten als Definition von Abschluss: [mm] \overline{M} [/mm] = [mm] \cap [/mm] A, mit A [mm] \subset [/mm] M und A abgeschlossen.
Allerdings kann ich mir unter dem Abschluss noch nichts vorstellen. Hätte jemand vielleicht ein Beispiel und einen Tipp, wie ich an die obige Aufgabe herangehen kann.

Vielen Dank und viele Grüße,
Anette.

        
Bezug
Abschluss einer Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Di 20.04.2010
Autor: fred97

Es ist z. B. $ [mm] \overline{M}= [/mm] M [mm] \cup [/mm] H(M) $, wobei H(M) die Menge der Häufungspunkte von M ist.

Vielleicht kannst Du die jetzt [mm] \overline{M} [/mm] besser vorstellen.

Zu Deiner Aufgabe: denk mal an rationale Zahlen

FRED

Bezug
                
Bezug
Abschluss einer Teilmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Di 20.04.2010
Autor: anetteS

Ah, die Definition ist verständlicher, also von M=]1,7] wäre der Abschluss [1,7], also M vereinigt mit den Häufungspunkten von M, was hier 1 wäre. Ist das richtig?

Zur Aufgabe, wenn ich an [mm] \IQ [/mm] denke, dann hat [mm] \IQ [/mm] als Häufungspunkte die reellen Zahlen und der Abschluss wäre dann ganz [mm] \IR. [/mm] Richtig?

Vielen, vielen Dank fred97, du hast mir schnell und gut weiter geholfen.
Viele Grüße,
Anette

Bezug
                        
Bezug
Abschluss einer Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Di 20.04.2010
Autor: fred97


> Ah, die Definition ist verständlicher, also von M=]1,7]
> wäre der Abschluss [1,7], also M vereinigt mit den
> Häufungspunkten von M, was hier 1 wäre. Ist das richtig?


Nicht ganz. Ist M=]1,7] , so ist H(M) = [1,7]

>  
> Zur Aufgabe, wenn ich an [mm]\IQ[/mm] denke, dann hat [mm]\IQ[/mm] als
> Häufungspunkte die reellen Zahlen und der Abschluss wäre
> dann ganz [mm]\IR.[/mm] Richtig?

Ja

FRED

>  
> Vielen, vielen Dank fred97, du hast mir schnell und gut
> weiter geholfen.
>  Viele Grüße,
>  Anette


Bezug
        
Bezug
Abschluss einer Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Di 20.04.2010
Autor: Blech

Hi,

> Geben Sie ein Beispiel an für: Eine echte Teilmenge M von
> [mm]\IR,[/mm] deren Abschluss ganz  [mm]\IR[/mm] ist.
>  Hallo, ich bins mal wieder;-).
>  Wir hatten als Definition von Abschluss: [mm]\overline{M}[/mm] =
> [mm]\cap[/mm] A, mit A [mm]\subset[/mm] M und A abgeschlossen.

Das ist falsch herum.

[mm] $\overline [/mm] M = [mm] \bigcap \{A\ |\ M\subseteq A,\ A\ \text{abgeschlossen}\}$ [/mm]

Man beachte die Richtung: [mm] $M\subseteq [/mm] A$

[mm] $\overline [/mm] M$ ist die kleinste abgeschlossene Menge, die M enthält.

ciao
Stefan

Bezug
                
Bezug
Abschluss einer Teilmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Di 20.04.2010
Autor: anetteS

Hallo Blech, danke für deine Korrektur, dann stand es wohl falsch in meinem Skript:-(. Aber mit der Definition von fred97 komme ich sowieso besser zu Recht. Nochmal vielen Dank dafür, fred97.

Viele Grüße und bis zum nächsten Mal:-)
Anette.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]