www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungAbschnittsw. def. Funktionen?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Abschnittsw. def. Funktionen?
Abschnittsw. def. Funktionen? < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschnittsw. def. Funktionen?: Vorgehensweise
Status: (Frage) beantwortet Status 
Datum: 10:22 Do 16.05.2013
Autor: uli001

Aufgabe
Zum Beispiel: y= |-0,5x - 0,5|

Hallo zusammen,

ich beschäftige mich momentan mit den Abschnittsweise definierten Funktionen. ich schaffe es, zu diesen die Graphen zu zeichnen und umgekehrt, aus den Graphen die Funktionsvorschriften herauszuschreiben. Habe ich aber eine Betragsfunktion gegeben, schaffe ich es einfach nicht, diese als abschnittsw. def. Funktion zu schreiben???

Ich kapiers einfach nicht!!! Selbst wenn ich ein Beispiel mit Lösung im Nachhinein nachvollziehen kann, stehe ich beim nächsten wieder ratlos da...

Ich verstehe ja prinzipiell, was es damit auf sich hat, aber ich weiß nicht, wie ich vorgehen muss, um die Aufgaben zu lösen? Ich habe schon im Netz nach Erklärungen gesucht, aber irgendwie hat mir bisher nichts weitergeholfen.
Hätte jemand für mich eine gute Seite oder kann mir mal erklären, wie ich Punkt für Punkt vorgehen muss, um auf eine Lösung zu kommen???

Für jeden Rat dankbar,
Grüße, Uli


        
Bezug
Abschnittsw. def. Funktionen?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Do 16.05.2013
Autor: fred97


> Zum Beispiel: y= |-0,5x - 0,5|
>  Hallo zusammen,
>  
> ich beschäftige mich momentan mit den Abschnittsweise
> definierten Funktionen. ich schaffe es, zu diesen die
> Graphen zu zeichnen und umgekehrt, aus den Graphen die
> Funktionsvorschriften herauszuschreiben. Habe ich aber eine
> Betragsfunktion gegeben, schaffe ich es einfach nicht,
> diese als abschnittsw. def. Funktion zu schreiben???
>  
> Ich kapiers einfach nicht!!! Selbst wenn ich ein Beispiel
> mit Lösung im Nachhinein nachvollziehen kann, stehe ich
> beim nächsten wieder ratlos da...
>  
> Ich verstehe ja prinzipiell, was es damit auf sich hat,
> aber ich weiß nicht, wie ich vorgehen muss, um die
> Aufgaben zu lösen? Ich habe schon im Netz nach
> Erklärungen gesucht, aber irgendwie hat mir bisher nichts
> weitergeholfen.
>  Hätte jemand für mich eine gute Seite oder kann mir mal
> erklären, wie ich Punkt für Punkt vorgehen muss, um auf
> eine Lösung zu kommen???
>  
> Für jeden Rat dankbar,
>  Grüße, Uli
>  


Vorweg: es ist |a|=a, falls a [mm] \ge [/mm] 0 ist und |a|=-a, falls a<0 ist.

Nun hast Du die Funktion

    y(x)= |-0,5x - 0,5|

Dann ist y(x)=-0,5x-0,5, falls -0,5x-0,5 [mm] \ge [/mm] 0 ist , und das ist der Fall, wenn x [mm] \ge [/mm] -1 ist.

Somit ist y(x)=-(-0,5x-0,5)=0,5x+0,5, wenn x>-1 ist.


FRED

Bezug
                
Bezug
Abschnittsw. def. Funktionen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:35 Do 16.05.2013
Autor: uli001

Müsste bei y(x)=-0,5x-0,5 x nicht kleiner gleich -1 sein? Weil für x größer als -1 wird es dabei ja negativ?

Bezug
                        
Bezug
Abschnittsw. def. Funktionen?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:42 Do 16.05.2013
Autor: Steffi21

Hallo, du hast die Funktion f(x)=|-0,5x-0,5|, skizziere dir zunächst die Funktion

f(x)=-0,5x-0,5

[Dateianhang nicht öffentlich]

für negative Funktionswerte wird der Graph der Funktion an der x-Achse gespiegelt, also an der Stelle x=-1

[Dateianhang nicht öffentlich]

Steffi




Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Bezug
                                
Bezug
Abschnittsw. def. Funktionen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:01 Do 16.05.2013
Autor: uli001

Danke, dass du dir die Arbeit gemacht hast. Das graphische ist gar nicht das Problem... wobei im Normalfall ja die Zeit fehlt (in Prüfungssituationen), um sich die Aufgabe so verdeutlichen zu können.

Trotzdem noch immer meine Frage wie oben (nach Freds Erklärung): müsste x nicht kleiner gleich -1 sein bei -0,5x-0,5?

Bezug
                                        
Bezug
Abschnittsw. def. Funktionen?: Tippfehler
Status: (Antwort) fertig Status 
Datum: 11:09 Do 16.05.2013
Autor: Roadrunner

Hallo Uli!


> Trotzdem noch immer meine Frage wie oben (nach Freds
> Erklärung): müsste x nicht kleiner gleich -1 sein bei -0,5x-0,5?

[ok] Richtig. Da hat sich bei Fred wohl ein kleines (Tipp-)Fehlerteufelchen eingeschlichen.


Im übrigen kann man Deine Funktion auch im Vorfeld etwas vereinfachen:

$f(x) \ = \ [mm] \left| \ -0{,}5*x-0{,}5 \ \right| [/mm] \ = \ [mm] \left| \ -0{,}5*(x+1) \ \right| [/mm] \ = \ [mm] \left| \ -0{,}5 \ \right|*\left| \ x+1 \ \right| [/mm] \ = \ [mm] +0{,}5*\left| \ x+1 \ \right|$ [/mm]

Und das ist doch schon etwas anschaulicher, oder?


Gruß vom
Roadrunner

Bezug
        
Bezug
Abschnittsw. def. Funktionen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 Do 16.05.2013
Autor: uli001

Aufgabe
y = |x| - 2

Wenn ich jetzt oben genannte Aufgaben berechne, würde ich als Lösung erhalten

y = x-2 für x [mm] \ge [/mm] 2

y= -x-2 für x <-2

Im Buch steht aber eine andere Lösung. Wo ist mein Fehler?
Beim oberen wird y doch für alle Werte, die größer oder gleich 2 sind, positiv. Und beim unteren für alle Werte die -2 oder weniger sind, oder nicht????

VG

Bezug
                
Bezug
Abschnittsw. def. Funktionen?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Do 16.05.2013
Autor: Diophant

Hallo,

> y = |x| - 2
> Wenn ich jetzt oben genannte Aufgaben berechne, würde ich
> als Lösung erhalten

>

> y = x-2 für x [mm]\ge[/mm] 2

>

> y= -x-2 für x <-2

>

> Im Buch steht aber eine andere Lösung. Wo ist mein
> Fehler?
> Beim oberen wird y doch für alle Werte, die größer oder
> gleich 2 sind, positiv. Und beim unteren für alle Werte
> die -2 oder weniger sind, oder nicht????

Du musst dir nochmal die Definition der Bertagsfunktion

[mm]|x|:=\begin{cases} -x, & \textrm{für } x<0 \\ x, & \textrm{für } x\ge{0} \end{cases}[/mm]

Beim Aufflösen der Betragsklammern musst du also all jene Stellen im Auge haben, wo der Inhalt der Betragsklammer das Vorzeichen wechselt. Und das ist hier sicherlich nicht bei x=2 der Fall, oder? ;-)


Gruß, Diophant

Bezug
                        
Bezug
Abschnittsw. def. Funktionen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 Do 16.05.2013
Autor: uli001

Hm, schon klar, der Betrag von x ist -x und +x. Aber ich kann doch das -2 nicht unter den Tisch fallen lassen...???

Bezug
                                
Bezug
Abschnittsw. def. Funktionen?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Do 16.05.2013
Autor: Diophant

Hallo,

> Hm, schon klar, der Betrag von x ist -x und +x. Aber ich
> kann doch das -2 nicht unter den Tisch fallen lassen...???

Steht denn die -2 im Betrag drinnen oder außerhalb? Bewirkt sie dann irgendetwas hinsichtlcih des Betrags oder nicht?


Gruß, Diophant

Bezug
                                        
Bezug
Abschnittsw. def. Funktionen?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Do 16.05.2013
Autor: uli001

Bedeutet dies, dass ein Faktor (ohne x), der außerhalb der Betragsstriche steht, nicht relevant ist? Also dort könnte quasi ebenso +4, -2365, -1/2 oder was auch immer stehen? Ich betrachte immer nur den Teil innerhalb des Betrags?

Bezug
                                                
Bezug
Abschnittsw. def. Funktionen?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 Do 16.05.2013
Autor: Diophant

Hallo,

> Bedeutet dies, dass ein Faktor (ohne x), der außerhalb der
> Betragsstriche steht, nicht relevant ist? Also dort könnte
> quasi ebenso +4, -2365, -1/2 oder was auch immer stehen?
> Ich betrachte immer nur den Teil innerhalb des Betrags?

Ja, so ist es. Beachte aber bitte auch, dass die -2 hier kein Faktor sondern ein Summand ist. Die korrekte Benutzung dieser Begriffe ist sehr wichtig!

Gruß, Diophant

Bezug
                                                        
Bezug
Abschnittsw. def. Funktionen?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Do 16.05.2013
Autor: uli001

Ah okay,

ganz herzlichen Dank, das hat mir sehr sehr sehr geholfen!!!

VLG, Uli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]