www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstände zweier par.Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Längen, Abstände, Winkel" - Abstände zweier par.Geraden
Abstände zweier par.Geraden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstände zweier par.Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Do 16.11.2006
Autor: donpsycho

Aufgabe
Rechenweg:
Aufpunkt einer Gerade nehmen
Daraus Ebene mit Richtungsvektor der anderen Geraden als Normalenvektor
Schnitt Ebene-Gerade
Differenz ausrechnen
Richtig?

Ich habe zwei nachgewiesenermaßen Parallele Geraden, deren Abstände ich berechnen soll.
Allerdings scheint sich immer irgendwo ein Fehler einzuschleichen, da ich stehts keinen Schnittpunkt erhalte. Im folgenden mein Weg.
[mm] g:\vec{x}=\vektor{2 \\1 \\2 } [/mm] + t * [mm] \vektor{1 \\0 \\1 } [/mm]
[mm] h:\vec{x}=\vektor{2 \\3 \\4 }+s*\vektor{3 \\0 \\3 } [/mm]
Nun nehme ich den Aufpunkt von h
[mm] P_{h}=\vektor{2 \\3 \\4 } [/mm]
und als Normalenvektor der Ebene den Richtungsvektor von g und erhalte:
[mm] E_{h}=\vektor{1 \\0 \\1 } (\vec{x}-\vektor{2 \\3 \\4 }) [/mm]
und setze jetzt für [mm] \vec{x} [/mm] die Gerade g ein, um den Schnittpunkt zu erhalten:
[mm] E_{h}=\vektor{1 \\0 \\1 } (\vektor{2 \\1 \\2 }+t*\vektor{1 \\0 \\1 }-\vektor{2 \\3 \\4 }) [/mm]
[mm] \vec{0}=\vektor{1 \\0 \\1 } (\vektor{2 \\1 \\2 }+t*\vektor{1 \\0 \\1 }-\vektor{2 \\3 \\4 }) [/mm]
Löse ich hier weiter auf komme ich schließlich auf drei Gleichungssysteme und erhalte für t keine Lösung.
Könnt ihr mir sagen, wo der Fehler liegt?
MfG
Don Psycho

        
Bezug
Abstände zweier par.Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Do 16.11.2006
Autor: galileo

Hallo donpsycho

> Rechenweg:
>  Aufpunkt einer Gerade nehmen
>  Daraus Ebene mit Richtungsvektor der anderen Geraden als
> Normalenvektor
>  Schnitt Ebene-Gerade
>  Differenz ausrechnen
>  Richtig?

Man kann es auch so machen, ja.

>  Ich habe zwei nachgewiesenermaßen Parallele Geraden, deren
> Abstände ich berechnen soll.
>  Allerdings scheint sich immer irgendwo ein Fehler
> einzuschleichen, da ich stehts keinen Schnittpunkt erhalte.
> Im folgenden mein Weg.
>  [mm]g:\vec{x}=\vektor{2 \\1 \\2 }[/mm] + t * [mm]\vektor{1 \\0 \\1 }[/mm]
> [mm]h:\vec{x}=\vektor{2 \\3 \\4 }+s*\vektor{3 \\0 \\3 }[/mm]
>  Nun
> nehme ich den Aufpunkt von h
>  [mm]P_{h}=\vektor{2 \\3 \\4 }[/mm]
>  und als Normalenvektor der
> Ebene den Richtungsvektor von g und erhalte:
>  [mm]E_{h}=\vektor{1 \\0 \\1 } (\vec{x}-\vektor{2 \\3 \\4 })[/mm]
>  
> und setze jetzt für [mm]\vec{x}[/mm] die Gerade g ein, um den
> Schnittpunkt zu erhalten:
>  [mm]E_{h}=\vektor{1 \\0 \\1 } (\vektor{2 \\1 \\2 }+t*\vektor{1 \\0 \\1 }-\vektor{2 \\3 \\4 })[/mm]
>  
> [mm]\vec{0}=\vektor{1 \\0 \\1 } (\vektor{2 \\1 \\2 }+t*\vektor{1 \\0 \\1 }-\vektor{2 \\3 \\4 })[/mm]
>  
> Löse ich hier weiter auf komme ich schließlich auf drei
> Gleichungssysteme und erhalte für t keine Lösung.
>  Könnt ihr mir sagen, wo der Fehler liegt?

Ja, du erhältst kein Gleichungssystem, sondern eine einzige Gleichung in t.
Die Lösung ist t=1. Vergesse nicht, dass du ein Skalarprodukt hast.

Alles klar? :-)

Schöne Grüße, galileo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]