www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieAbstand von paralleler Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Abstand von paralleler Geraden
Abstand von paralleler Geraden < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand von paralleler Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Di 02.08.2011
Autor: Charlie1984


Hallo!
Ich bin nun endlich soweit und schreibe meine Bachelorarbeit(Ganzzahlige Optimierung). Nun bin ich mir an einer Stelle nicht ganz sicher, ob das richtig ist was ich da tue, da ich in Geometrie nicht zu meinen Stärken zähle.
Es geht darum, dass aus einem Rechenbeispiel eine allg. Form entwickeln möchte.

Seien die Geraden [mm]g_{1}[/mm] und [mm]g_{2}[/mm] gegeben.

[mm]g_{1}: ax_{1}+bx_{2}=c [/mm]
[mm]g_{2}: ax_{1}+bx_{2}=0 [/mm]

Dann ist der Abstand der beiden Geraden: [mm]D=\frac{|c|}{\sqrt{a^2+b^2}}[/mm].

Nun habe ich jedoch Hyperebenen mit "dim > 2".Es sind also:

[mm]G_{1}:&\sum \limits_{j=n+1}^{n+m} \alpha_{j} x_{j} = c [/mm]

[mm]G_{2}:&\sum \limits_{j=n+1}^{n+m} \alpha_{j} x_{j} = 0 [/mm]

Ist dann der Abstand der beiden Geraden(?):

[mm]D=d(G_{1},G_{2})=\frac{|c|}{\sqrt{\sum \limits_{j=n+1}^{n+m} (\alpha_{j})^{2}}}[/mm]

Die Frage ist also: kann ich einfach aus dem 2-dimensionalen Fall eine allg. Form für Hyperebenen ableiten?

Würd mich freuen wenn mir jmd. weiterhelfen kann bzw. mir sagen ob meine Folgerung korrekt ist.

Gruß Charlie


        
Bezug
Abstand von paralleler Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Di 02.08.2011
Autor: MathePower

Hallo Charlie1984,

>
> Hallo!
>  Ich bin nun endlich soweit und schreibe meine
> Bachelorarbeit(Ganzzahlige Optimierung). Nun bin ich mir an
> einer Stelle nicht ganz sicher, ob das richtig ist was ich
> da tue, da ich in Geometrie nicht zu meinen Stärken
> zähle.
>  Es geht darum, dass aus einem Rechenbeispiel eine allg.
> Form entwickeln möchte.
>  
> Seien die Geraden [mm]g_{1}[/mm] und [mm]g_{2}[/mm] gegeben.
>  
> [mm]g_{1}: ax_{1}+bx_{2}=c[/mm]
>  [mm]g_{2}: ax_{1}+bx_{2}=0[/mm]
>  
> Dann ist der Abstand der beiden Geraden:
> [mm]D=\frac{|c|}{\sqrt{a^2+b^2}}[/mm].
>  
> Nun habe ich jedoch Hyperebenen mit "dim > 2".Es sind
> also:
>  
> [mm]G_{1}:&\sum \limits_{j=n+1}^{n+m} \alpha_{j} x_{j} = c[/mm]
>  
> [mm]G_{2}:&\sum \limits_{j=n+1}^{n+m} \alpha_{j} x_{j} = 0[/mm]
>  
> Ist dann der Abstand der beiden Geraden(?):
>  
> [mm]D=d(G_{1},G_{2})=\frac{|c|}{\sqrt{\sum \limits_{j=n+1}^{n+m} (\alpha_{j})^{2}}}[/mm]
>  
> Die Frage ist also: kann ich einfach aus dem
> 2-dimensionalen Fall eine allg. Form für Hyperebenen
> ableiten?


Ja.


>  
> Würd mich freuen wenn mir jmd. weiterhelfen kann bzw. mir
> sagen ob meine Folgerung korrekt ist.
>  
> Gruß Charlie

>

Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]