www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenAbstand windschiefer Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - Abstand windschiefer Geraden
Abstand windschiefer Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand windschiefer Geraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:03 Mo 21.02.2011
Autor: matheschueler94

Aufgabe
Es sein zwei windschiefe geraden gegeben, deren Abstand zu berechnen ist. Der Abstand soll auf 3 Möglichkeiten berechnet werden.

Hallo,

haben das heute angefangen und sollen das zu Hause zu Ende machen. Die drei Möglichkeiten sind einmal das über die Differentialrechnung zu machen, dann über einen gemeinsamen Lot und dann über eine Möglichkeit mit dem Kreuzprodukt. Die ersten bedien Möglichkeiten sind soweit klar, bekomme auch die richtige Lösung dabei raus, jedoch komme ich bei der dritten nicht weiter.
Der Lehrer hat dazu nur angeschrieben:
[mm] \overrightarrow{PQ}=k*(\vektor{a_{1} \\ a_{2} \\ a_{3}}\times\vektor{b_{1} \\ b_{2} \\ b_{3}}) [/mm]

        
Bezug
Abstand windschiefer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Mo 21.02.2011
Autor: Al-Chwarizmi


> Es seien zwei windschiefe Geraden gegeben, deren Abstand zu
> berechnen ist. Der Abstand soll auf 3 Möglichkeiten
> berechnet werden.
>  Hallo,
>  
> haben das heute angefangen und sollen das zu Hause zu Ende
> machen. Die drei Möglichkeiten sind einmal das über die
> Differentialrechnung zu machen, dann über ein
> gemeinsames Lot und dann über eine Möglichkeit mit dem
> Kreuzprodukt. Die ersten bedien Möglichkeiten sind soweit
> klar, bekomme auch die richtige Lösung dabei raus, jedoch
> komme ich bei der dritten nicht weiter.
>  Der Lehrer hat dazu nur angeschrieben:
>  [mm]\overrightarrow{PQ}=k*(\vektor{a_{1} \\ a_{2} \\ a_{3}}\times\vektor{b_{1} \\ b_{2} \\ b_{3}})[/mm]


Hallo matheschueler94,

was der Lehrer damit genau gemeint haben mag, ist
mir nicht klar. Falls du aber neben dem Vektorprodukt
auch das "gemischte Produkt" bzw. "Spatprodukt"
kennst, kann man damit eine geschlossene Formel
herleiten. Die Richtungsvektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] der beiden
Geraden spannen ein Parallelogramm auf, zusammen
mit dem Verbindungsvektor [mm] \vec{c}=\overrightarrow{PQ} [/mm]  der beiden
Stützpunkte P und Q  einen Spat. Der gesuchte Abstand
der windschiefen Geraden entspricht einer Höhe des
Spats. Wenn man dann an die Volumenformel

     [mm] $\text{Volumen = Grundfläche x Höhe}$ [/mm]

denkt, ist der Weg zu einer Abstandsformel nicht mehr weit.


LG     Al-Chw.

Bezug
                
Bezug
Abstand windschiefer Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Mo 21.02.2011
Autor: matheschueler94

Hallo,

zuerst einmal vielen Dank für deine Antwort.
Leider haben wir das Spatprodukt (noch) nicht gehabt. Einen Lösungsweg, der zur richtigen Lösung führt (der Lehrer hat diese angegeben) habe ich bereits schon, nur eben nicht den auf dieser Möglichkeit basierenden.
Vielleicht weiß jemand anderes, was mein Lehrer gemeint haben könnte?

Grüße

Bezug
                        
Bezug
Abstand windschiefer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 Mo 21.02.2011
Autor: abakus


> Hallo,
>  
> zuerst einmal vielen Dank für deine Antwort.
>  Leider haben wir das Spatprodukt (noch) nicht gehabt.
> Einen Lösungsweg, der zur richtigen Lösung führt (der
> Lehrer hat diese angegeben) habe ich bereits schon, nur
> eben nicht den auf dieser Möglichkeit basierenden.
>  Vielleicht weiß jemand anderes, was mein Lehrer gemeint
> haben könnte?

Hallo,
dieser dritte Weg basiert im Prinzip auf dem zweiten.
Das Vektorprodukt zweier Vektoren ist ein neuer Vektor, der auf beiden gegebenen Vektoren senkrecht steht (die gleiche Eigenschaft hat ein gemeinsames Lot beider Geraden (bzw. ihrer Richtungsvektoren).
Gruß Abakus

>  
> Grüße


Bezug
                                
Bezug
Abstand windschiefer Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Mo 21.02.2011
Autor: matheschueler94

Okay, und wenn ich dann alles soweit ausgerechnet habe?
Also sagen wir mal, ich habe für [mm] \overrightarrow{PQ} [/mm] den folgenden Vektor berechnet:
[mm] \vektor{5s \\ -5s \\ 20s} [/mm]

Wie mache ich dann weiter? Wenn ich die Länge berechne bekomme ich etwas, das von s abhängig ist. (In diesem Fall wäre das [mm] \wurzel{450}*s) [/mm]

Bezug
                                        
Bezug
Abstand windschiefer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Mo 21.02.2011
Autor: leduart

Hallo
du sagtest doch in 2 hast du das mit dem gemeinsamen Lot gemacht;  wie?
hier hast du jetz direkt ein gemeinsames Lot, dann weiter wie in 2
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]