www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAbstand zu Tangende
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Abstand zu Tangende
Abstand zu Tangende < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand zu Tangende: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 11:54 Mi 08.06.2005
Autor: oxy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hi,
ich bin gerade am büffel für die Prüfungen und bin gerade über folgende Aufgabe gestolpert :

[mm] f(x)=x^2*e^x [/mm]
Zeige das die Funktion f zwei Punkte mit der waagrechten Tangente besitzt. Bestimmen Sie den Abstand dieser beiden Punkte.
Die Lösung soll sein : d=  [mm] \wurzel [/mm] 4+16e^-4

Ich hätte jetzt die erste Ableitung gemacht, aber dann komm ich nicht mehr weiter . Wie komme ich dann auf das Ergebnis ?
Produktregel -> f'(x) = [mm] 2x*e^x+e^x*x² [/mm]  ?

mfg oxy

        
Bezug
Abstand zu Tangende: Hilfe
Status: (Antwort) fertig Status 
Datum: 12:10 Mi 08.06.2005
Autor: Zwerglein

Hi, Stefan,

> [mm]f(x)=x^2*e^x[/mm]
>  Zeige das die Funktion f zwei Punkte mit der waagrechten
> Tangente besitzt. Bestimmen Sie den Abstand dieser beiden
> Punkte.
>  Die Lösung soll sein : d=  [mm]\wurzel[/mm] 4+16e^-4
>  
> Ich hätte jetzt die erste Ableitung gemacht, aber dann komm
> ich nicht mehr weiter . Wie komme ich dann auf das Ergebnis
> ?
>  Produktregel -> f'(x) = [mm]2x*e^x+e^x*x²[/mm]  ?

Richtig! Da [mm] e^{x} [/mm] nicht null werden kann, gilt:
f'(x) = 0 <=> 2x + [mm] x^{2} [/mm] = 0
Die Lösungen (hättest Du sicher auch geschafft) sind:
[mm] x_{1}=0; x_{2} [/mm] =-2.

Die beiden Punkte, in denen der Graph waagrechte Tangenten besitzt, sind demnach:
[mm] P_{1}(0 [/mm] ; 0) und [mm] P_{2}(-2 [/mm] ; [mm] 4*e^{-2}) [/mm]

Wie berechnet man den Abstand (bzw. die Entfernung) d zweier Punkte im Koordinatensystem?
Nun: Das ist letztlich eine Anwendung des Pythagoras (zu finden in jeder guten Formelsammlung; manchmal sogar in einer schlechten!):

d = [mm] \wurzel{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}} [/mm]

Die oben berechneten Werte einzusetzen - das schaffst Du nun sicher selbst!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]