www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstand zweier Geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Längen, Abstände, Winkel" - Abstand zweier Geraden
Abstand zweier Geraden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand zweier Geraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:03 Mo 21.06.2010
Autor: LadyVal

Aufgabe
Die Geraden mit den Gleichungen

[mm] \vec{x}= \vektor{5 \\ 11 \\ 17} [/mm] + t [mm] \vektor{1 \\ 2 \\ 0} [/mm]

[mm] \vec{x}= \vektor{7 \\ 12 \\ 23} [/mm] + t [mm] \vektor{9 \\ 11 \\ 0} [/mm]

sind beide parallel zu einer Koordinatenebene. Erläutern Sie, wie man den Gleichungen direkt entnehmen kann, dass der Abstand der Geraden 6 beträgt.

Hey!

Mir fehlt bei o.g. Aufgabe völlig der Ansatz.
(Ich verstehe auch schon einmal nicht, ob gemeint ist, dass die eine Gerade zu der einen und die andere Gerade zu einer anderen Koordinatenebene parallel ist oder ob beide Geraden zur gleichen Koordinatenebene parallel sein sollen.)

Über Hilfe wäre ich sehr dankbar!
LG
Val


        
Bezug
Abstand zweier Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Mo 21.06.2010
Autor: angela.h.b.


> Die Geraden mit den Gleichungen
>
> [mm]\vec{x}= \vektor{5 \\ 11 \\ 17}[/mm] + t [mm]\vektor{1 \\ 2 \\ 0}[/mm]
>  
> [mm]\vec{x}= \vektor{7 \\ 12 \\ 23}[/mm] + t [mm]\vektor{9 \\ 11 \\ 0}[/mm]
>  
> sind beide parallel zu einer Koordinatenebene. Erläutern
> Sie, wie man den Gleichungen direkt entnehmen kann, dass
> der Abstand der Geraden 6 beträgt.
>  
> Hey!
>  
> Mir fehlt bei o.g. Aufgabe völlig der Ansatz.
> (Ich verstehe auch schon einmal nicht, ob gemeint ist, dass
> die eine Gerade zu der einen und die andere Gerade zu einer
> anderen Koordinatenebene parallel ist oder ob beide Geraden
> zur gleichen Koordinatenebene parallel sein sollen.)

Hallo,

sie sind zur selben Koordinatenebene parallel.
Um dies zu erkennen, schau die Richtungsvektoren an.
Um welche Koodinatenebene handelt es sich?

Wie weit sind die beiden Stützpunkte von dieser entfernt?

Gruß v. Angela

Bezug
                
Bezug
Abstand zweier Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Mo 21.06.2010
Autor: LadyVal

Puh. Danke!

Okay, habe mir nun Folgendes zusammengereimt:

Da beide Richtungsvektoren bei [mm] x_{3} [/mm] eine 0 stehen haben, erkenne ich daran, dass sie zur selben Koordinatenebene parallel sind, richtig?

Die Koordinatenebene zu der sie paralle sind, ist dann die [mm] x_{1}x_{2}-Ebene. [/mm]
Ebenfalls richtig?

Da die Stützvektoren bei [mm] x_{3} [/mm] einmal 17 und einmal 23 stehen haben, ist dies also mein Abstand.

Richtig schlussgefolgert?

Bezug
                        
Bezug
Abstand zweier Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mo 21.06.2010
Autor: angela.h.b.


> Puh. Danke!
>  
> Okay, habe mir nun Folgendes zusammengereimt:
>
> Da beide Richtungsvektoren bei [mm]x_{3}[/mm] eine 0 stehen haben,
> erkenne ich daran, dass sie zur selben Koordinatenebene
> parallel sind, richtig?
>  
> Die Koordinatenebene zu der sie paralle sind, ist dann die
> [mm]x_{1}x_{2}-Ebene.[/mm]
>  Ebenfalls richtig?


Hallo,

ja.

>  
> Da die Stützvektoren bei [mm]x_{3}[/mm] einmal 17 und einmal 23
> stehen haben, ist dies also mein Abstand.

Damit hast Du die Abstände der beiden Geraden zur xy-Koordinatenebene.

Gruß v. Angela

>  
> Richtig schlussgefolgert?  


Bezug
        
Bezug
Abstand zweier Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Mo 21.06.2010
Autor: LadyVal

Super! Herzlichen Dank!
LG Val

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]