www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelAbstandsprobleme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Längen, Abstände, Winkel" - Abstandsprobleme
Abstandsprobleme < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstandsprobleme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 So 26.08.2007
Autor: Cycek

Aufgabe
Durch die beiden Vektorgleichungen sind eine Ursprungsgerade g und eine Gerade h gegeben. Bestimme den kürzesten Abstand d zwischen den beiden Geraden g und h.

[mm] g\equiv\vec{x}= s\vektor{2 \\ -3 \\ 2} [/mm]


[mm] h\equiv\vec{x}= \vektor{17 \\ 4 \\ 10}+ t\vektor{2 \\ 0 \\ -1} [/mm]

Hallo !

Also die Aufgabe habe ich auf einem Weg gelöst. Habe dazu den allg. Verbindundsvektor ST berechnet mit einem bel. Punkt S von g und T von h. Durch 2 Orthogonalitätsbedingungen bekommt man dann die Parameter s und t raus und dann die Endpunkte A und B. Die Länge beträgt 15.

Nun komm ich zu meiner Frage und zwar hat mein Lehrer erzählt, dass man 5 Wege hat um diese Länge zu berechnen. Den ich gerade gemacht hab, war der 1.

Welche Wege gibt es denn noch? Das ist mir wichtig, weil er meinte dass er die anderen Wege in der Klausur nehmen wird und ich will nich so plötzlich überrascht werden :P


        
Bezug
Abstandsprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:37 So 26.08.2007
Autor: Kroni

Hi,

auf die Schnelle fällt mir noch folgende Idee ein:

Man konstruiert aus den beiden Geradengleichungen zwei parallele Ebene und kann dann das Problem Abstand zwischen zwei Ebenen lösen, was mit Hilfe der Hesse'schen Normalenform kein Problem darstellen sollte.
Wie man aus zwei Geraden zwei Parallele Ebenen konstuieren kann, solltest du dir selbst überlegen. Nur noch ein Tip: Nimm eine Gerade plus den Richtungsvektor der anderen Gerade.....

LG

Kroni

Bezug
        
Bezug
Abstandsprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 So 26.08.2007
Autor: vagnerlove

Hallo

Man könnte hier den Abstand des Punktes (2s|-3s|2s) zur Geraden h bestimmen. Wie das geht weißt du sicherlich.

Dann musst du nur noch schauen, bei welchem s der Abstand minimal wird.

Gruß
Reinhold

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]