www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteAbweichung vom Grenzwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - Abweichung vom Grenzwert
Abweichung vom Grenzwert < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abweichung vom Grenzwert: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:08 Do 19.07.2007
Autor: Bengel777

Aufgabe
Bestimmen Sie [mm] \limes_{n\rightarrow\infty}a_n [/mm] und für welche Werte n ist die Abweichung vom Grenzwert kleiner als [mm] \in. [/mm]
a) [mm] a_n [/mm] = [mm] \bruch{4n-3}{2n+1}, \in=0,001 [/mm]
b) [mm] a_n [/mm] = [mm] \bruch{n^2+3}{2n^2+1} [/mm] , [mm] \in=0,1 [/mm]

Also bei der ersten soll angeblich n>=2500 raus kommen aber ich komm da nich drauf...
Für den lim von a hab ich 2 raus und hab hier komm ich dann nich weiter und bei der zweiten is es genauso..
Ich hoffe mir kann jemand helfen

        
Bezug
Abweichung vom Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Do 19.07.2007
Autor: M.Rex

Hallo Nadine

Am sinnvollsten ist für die Grenzwertbestimmung bei gebrochen Rationalen Folgen/Funktionen die Polynomdivision zu machen.

Also hier:

[mm] a_{n}=\bruch{4n-3}{2n+1} [/mm]

[mm] (4n-3):(2n+1)=2-\bruch{5}{2n+1} [/mm]

Wenn jetzt n gegen unendlich läuft, wird der hintere Teil immer kleiner, also

[mm] \limes_{n\rightarrow\infty}a_{n} [/mm]
[mm] =\limes_{n\rightarrow\infty}\bruch{4n-3}{2n+1} [/mm]
[mm] =\limes_{n\rightarrow\infty}2-\bruch{5}{2n+1} [/mm]
[mm] =\limes_{n\rightarrow\infty}2-\limes_{n\rightarrow\infty}\bruch{5}{2n+1} [/mm]
=2-0
=2

Für die Abweichung kleiner als [mm] \epsilon [/mm]

Hier suchst du das N, für das gilt:

[mm] a_{N}>(\limes_{n\rightarrow\infty}a_{n})-\epsilon [/mm]
da die Grenze hier "von unten" erreicht wird:

(würde sie "von oben" erreicht, würde gelten:
[mm] a_{N}<(\limes_{n\rightarrow\infty}a_{n})+\epsilon) [/mm]

Hier suchst du also das N, für das gilt:

[mm] \bruch{4n-3}{2n+1}>2-0,001 [/mm]
[mm] \gdw 2-\bruch{5}{2n+1}>2-0,001 [/mm]
[mm] \gdw-\bruch{5}{2n+1}>-0,001 [/mm]
[mm] \gdw\bruch{5}{2n+1}\red{<}0,001 [/mm]
...

Für die andere Aufgabe gehst du analog vor.

Marius

Bezug
                
Bezug
Abweichung vom Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Do 19.07.2007
Autor: Bengel777

Also mir is klar was du damit erreichst aber wie kommst du bei der polynomendivision auf die 5 auf dem bruchstrich

Bezug
                        
Bezug
Abweichung vom Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:39 Do 19.07.2007
Autor: angela.h.b.


> Also mir is klar was du damit erreichst aber wie kommst du
> bei der polynomendivision auf die 5 auf dem bruchstrich

Hallo,

es ist 4n-3 = 2*(2n+1) -5.

Deshalb.

Gruß v. Angela

Bezug
                                
Bezug
Abweichung vom Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:42 Do 19.07.2007
Autor: Bengel777

Jo hab ich kapiert...
Aber wie komm ich dann mit der gleichung auf n>= 2500

Bezug
                                        
Bezug
Abweichung vom Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Do 19.07.2007
Autor: leduart

Hallo bengel
ein bissel selbst denken!
[mm] 5/(2n+1)\le [/mm] 0,001  kannst du doch wohl nach n auflösen!
Gruss leduart

Bezug
                                                
Bezug
Abweichung vom Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:08 Do 19.07.2007
Autor: Bengel777

Es tut mir leid wenn ich es selbst könnte würde ich es nicht hier rein setzen...
Ich habs nun mal nich so mit mathe und das ändert sich auch nich so schnell...
Aber ich danke euch alles für eure hilfe

Bezug
                                                        
Bezug
Abweichung vom Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Do 19.07.2007
Autor: M.Rex

Hallo

Also:

[mm] \bruch{5}{2n+1}\le0,001 [/mm]    |*(2n+1)
[mm] \gdw 5\le0,001(2n+1) [/mm]
[mm] \gdw 5\le0,002n+0,001 [/mm]

Den Rest machst du jetzt

Marius

Bezug
                        
Bezug
Abweichung vom Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Do 19.07.2007
Autor: M.Rex

Hallo.

[mm] (4n-3):(2n+1)=2-\bruch{5}{2n+1} [/mm]
-(4n+2)
    -5  

Marius

Bezug
        
Bezug
Abweichung vom Grenzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Do 19.07.2007
Autor: Mumrel

Wenn man Verwenden darf, dass [mm] \frac{1}{n} [/mm] f+r n gegen Unendlich gegen 0 geht kann man die Grentwerte solcher Aufgaben finde ich auch relativ schnell und elegant über erweitern lösen:

lim [mm] \frac{4n - 3}{2n + 1} [/mm] = lim [mm] \frac{(4n - 3) * \frac{1}{n}}{(2n + 1) * \frac{1}{n}} [/mm] = lim [mm] \frac{4 - \frac{3}{n}}{2 + \frac{1}{n}} [/mm]
Jetzt ausnutzen dass [mm] \frac{1}{n} [/mm] gegen null geht, also steht oben:

= [mm] \frac{4 - 0}{2 + 0} [/mm] = 2

Grüe Mumrel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]