www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenAbzählbare Mengen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Abzählbare Mengen
Abzählbare Mengen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abzählbare Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Mo 15.11.2010
Autor: LuisA44

Aufgabe
(a.) Es sei A eine überabzählbare Menge und B eine abzählbare Untermenge. Zeigen Sie, dass A\ B überabzählbar ist.
(b.) Es sei A eine abzählbare Teilmenge von [mm] \IR. [/mm] Zeigen Sie, dass die Menge der Häufungspunkte von A ganz [mm] \IR [/mm] ist.

Hallo zusammen,

wie so oft in Mathe sind die Aufgaben so banal, dass man nicht weiß wie man sie beweisen soll?
zu (a.) Es gibt zunächst eine Surjektion [mm] \IN \to [/mm] B und es gibt keine Surjektion von [mm] \IN \to [/mm] A und es soll bewiesen werden, dass es keine Surjektion von [mm] \IN \to [/mm] A\ B gibt.
Weiter komme ich leider nicht.
zu (b.) [mm] \IR [/mm] ist zunächst einmal nicht abzählbar und [mm] \IR\A [/mm] auch nicht, aber es gibt eine Surjektion [mm] \IN\to [/mm] A. Und ein Häufungspunkt ist ein Punkt, in dessen Umgebung unendlich viel Punkte von A liegen.
so hier weiß ich leider auch nicht wie ich weiter ansetzen soll?

Über Hilfe wäre ich sehr dankbar.

Mit freundlichen Grüßen
LuisA44

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Abzählbare Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Mo 15.11.2010
Autor: fred97


> (a.) Es sei A eine überabzählbare Menge und B eine
> abzählbare Untermenge. Zeigen Sie, dass A\ B
> überabzählbar ist.
>  (b.) Es sei A eine abzählbare Teilmenge von [mm]\IR.[/mm] Zeigen
> Sie, dass die Menge der Häufungspunkte von A ganz [mm]\IR[/mm]
> ist.
>  Hallo zusammen,
>  
> wie so oft in Mathe sind die Aufgaben so banal, dass man
> nicht weiß wie man sie beweisen soll?
>  zu (a.) Es gibt zunächst eine Surjektion [mm]\IN \to[/mm] B und es
> gibt keine Surjektion von [mm]\IN \to[/mm] A und es soll bewiesen
> werden, dass es keine Surjektion von [mm]\IN \to[/mm] A\ B gibt.
>  Weiter komme ich leider nicht.


Mach einen Widerspruchsbeweis: Annahme:  A\ B ist höchstens abzählbar.

Es ist  A= (A\ B ) [mm] \cup [/mm] B

Was weißt Du über die Vereinigung von endlich vielen abzählbaren Mengen ?


>  zu (b.) [mm]\IR[/mm] ist zunächst einmal nicht abzählbar und
> [mm]\IR\A[/mm] auch nicht, aber es gibt eine Surjektion [mm]\IN\to[/mm] A.
> Und ein Häufungspunkt ist ein Punkt, in dessen Umgebung
> unendlich viel Punkte von A liegen.
>  so hier weiß ich leider auch nicht wie ich weiter
> ansetzen soll?




Zunächst mal:   Die Aussage in (b) ist völliger Unsinn !!!!!!!

Es gibt rudelweise Gegenbeispiele:

        1.  [mm] \IN [/mm]

         2. $ [mm] \{1/n : n \in \IN \}$ [/mm]

...............   etc ..............


Lautet die Aufgabenstellung in b) wirklich so ?

FRED

>  
> Über Hilfe wäre ich sehr dankbar.
>  
> Mit freundlichen Grüßen
>  LuisA44
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
>  


Bezug
                
Bezug
Abzählbare Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Mo 15.11.2010
Autor: LuisA44

Hallo Fred,


> Mach einen Widerspruchsbeweis: Annahme:  A\ B ist
> höchstens abzählbar.
>  
> Es ist  A= (A\ B ) [mm]\cup[/mm] B
>  
> Was weißt Du über die Vereinigung von endlich vielen
> abzählbaren Mengen ?

Da überlegt man und überlegt man und überliest, dass B ene Untermenge sein soll [happy]

Also die Vereinigung abzählbarer Mengen ist wieder abzählbar und daraus folgt der Widerspruch weil A nicht abzählbar ist.
A (überabzählbar) = [mm] (A\B)(nach [/mm] Ann. abzählbar) [mm] \cup [/mm] B (abzählbar)
--> " überabzählbar = abzählbar " [mm] \Rightarrow [/mm] Widerspruch

>
> >  zu (b.) [mm]\IR[/mm] ist zunächst einmal nicht abzählbar und

> > [mm]\IR\A[/mm] auch nicht, aber es gibt eine Surjektion [mm]\IN\to[/mm] A.
> > Und ein Häufungspunkt ist ein Punkt, in dessen Umgebung
> > unendlich viel Punkte von A liegen.
>  >  so hier weiß ich leider auch nicht wie ich weiter
> > ansetzen soll?
>  
>
>
>
> Zunächst mal:   Die Aussage in (b) ist völliger Unsinn
> !!!!!!!
>  
> Es gibt rudelweise Gegenbeispiele:
>  
> 1.  [mm]\IN[/mm]
>  
> 2. [mm]\{1/n : n \in \IN \}[/mm]
>  
> ...............   etc ..............
>  
>
> Lautet die Aufgabenstellung in b) wirklich so ?

Hmmm das ist aber jetzt komisch. Ich habe die Aufgabe überprüft und sie lautet wirklich so. Und nu?

Danke für die schnelle Antwort.

LuisA44

Bezug
                        
Bezug
Abzählbare Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Mo 15.11.2010
Autor: fred97


> Hallo Fred,
>  
>
> > Mach einen Widerspruchsbeweis: Annahme:  A\ B ist
> > höchstens abzählbar.
>  >  
> > Es ist  A= (A\ B ) [mm]\cup[/mm] B
>  >  
> > Was weißt Du über die Vereinigung von endlich vielen
> > abzählbaren Mengen ?
>  
> Da überlegt man und überlegt man und überliest, dass B
> ene Untermenge sein soll [happy]
>  
> Also die Vereinigung abzählbarer Mengen ist wieder
> abzählbar


Nicht ganz !

         Die abzählbare Vereinigung abzählbarer Mengen ist wieder abzählbar


>  und daraus folgt der Widerspruch weil A nicht
> abzählbar ist.
>  A (überabzählbar) = [mm](A\B)(nach[/mm] Ann. abzählbar) [mm]\cup[/mm] B
> (abzählbar)
>  --> " überabzählbar = abzählbar " [mm]\Rightarrow[/mm]

> Widerspruch
>  
> >
> > >  zu (b.) [mm]\IR[/mm] ist zunächst einmal nicht abzählbar und

> > > [mm]\IR\A[/mm] auch nicht, aber es gibt eine Surjektion [mm]\IN\to[/mm] A.
> > > Und ein Häufungspunkt ist ein Punkt, in dessen Umgebung
> > > unendlich viel Punkte von A liegen.
>  >  >  so hier weiß ich leider auch nicht wie ich weiter
> > > ansetzen soll?
>  >  
> >
> >
> >
> > Zunächst mal:   Die Aussage in (b) ist völliger Unsinn
> > !!!!!!!
>  >  
> > Es gibt rudelweise Gegenbeispiele:
>  >  
> > 1.  [mm]\IN[/mm]
>  >  
> > 2. [mm]\{1/n : n \in \IN \}[/mm]
>  >  
> > ...............   etc ..............
>  >  
> >
> > Lautet die Aufgabenstellung in b) wirklich so ?
>  
> Hmmm das ist aber jetzt komisch. Ich habe die Aufgabe
> überprüft und sie lautet wirklich so. Und nu?


Dann hau Deinem Übungsleiter oder dem , der die "Aufgabe" verbrochen hat, mächtig auf die Nase


FRED

>  
> Danke für die schnelle Antwort.
>  
> LuisA44


Bezug
                                
Bezug
Abzählbare Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Mo 15.11.2010
Autor: LuisA44

Danke für deine Hilfe.

Ich werde mal bei meinem Übungsleiter nachfragen, was mit der Aufgabe los ist :-)

Lieben Gruß

LuisA44

Bezug
                                
Bezug
Abzählbare Mengen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:09 Mo 15.11.2010
Autor: LuisA44

Hallo Fred,
ich bins nochmal. Also die Aufgabe wurde geändert und heißt jetzt:

Es sei A eine abzählbare Teilmenge von [mm] \IR. [/mm] Zeigen Sie, dass die Menge der Häufungspunkte von [mm] \IR [/mm] \ A ganz [mm] \IR [/mm] ist."

Das heißt also, dass [mm] \IR [/mm] mit A eingeschlossen alle Häufungspunkte sind...
Kannst du mir vielleicht einen Tipp geben?

Lieben Gruß
LuisA44



Bezug
                                        
Bezug
Abzählbare Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:30 Mo 15.11.2010
Autor: LuisA44

hmmm... mit Aufgabe (a.) weiß man zunächst dass [mm] \IR [/mm] \ A auf jeden Fall überabzählbar ist.

Hilft das hier weiter?

Grüße
LuisA44

Bezug
                                        
Bezug
Abzählbare Mengen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Mi 17.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]