www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenAdditionstheoreme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Trigonometrische Funktionen" - Additionstheoreme
Additionstheoreme < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Additionstheoreme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Mo 05.02.2007
Autor: Snap

Aufgabe
Additionstheoreme:

Zwei Gleichungen mit zwei Unbekannten umformen. Eigentlich ganz einfach...

Hallo,

ich hab folgendes Problem:

Gegeben sind folgende Ausgangsgleichungen (die Zahl in Klammern soll der Index sein, also eigentlich tiefgestellt)

     F(1)*sinx+F(2)*siny=H*cosz
    -F(1)*cosx+F(2)*cosy=H*sinz

.

Ich habe versucht durch quadrieren und addieren der beiden Gleichungen
und unter zuhilfe nahme der Additionstheoreme folgende vorgebene Gleichung zu bekommen:

H²=F(1)²+F(2)²-2F(1)*F(2)*cos(x+y)


Leider erfolglos. Ich verzweifel wirklich!
Vielen vielen Dank für eure Hilfe

Markus





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Additionstheoreme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Mo 05.02.2007
Autor: Karl_Pech

Hallo Markus,


[willkommenmr]


> H²=F(1)²+F(2)²-2F(1)*F(2)*cos(x+y)


Ohne mich jetzt näher mit deinem Problem befassen zu können, erinnert mich die vorgegebene Gleichung etwas an den Kosinussatz. Falls es da eine Verbindung gibt, so könnte man ja vielleicht den Beweis zum Kosinussatz nehmen und ihn auf diese Gleichung "trimmen". (Kommt auf den Kontext an, aus dem du diese Gleichung her hast.)



Grüße
Karl




Bezug
                
Bezug
Additionstheoreme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:22 Mo 05.02.2007
Autor: Snap

Erstmal vielen Dank für die schnelle Reaktion auf mein Problem!

Das Problem ist eigentlich viel mehr mechanischer als mathematischer Natur. Ich muss gewisse Kräfte ausrechnen. Gegeben sind in diesem Fall die beiden Gleichungen Hcosz=... und Hsinz =...   .

Leider schaffe ich es einfach nicht die beiden Gleichungen so zu addieren, dass das gewünschte Ergebnis heraus kommt.
Kann mir vllt jmd zeigen wie das geht?

Markus

Bezug
        
Bezug
Additionstheoreme: Antwort
Status: (Antwort) fertig Status 
Datum: 23:26 Mo 05.02.2007
Autor: galileo

Hallo Snap

[mm] F_{1}\sin x+F_{2}\sin y=H\cos z [/mm]
[mm] -F_{1}\cos x+F_{2}\cos y=H\sin z [/mm]

Du quadrierst und addierst die beiden Gleichungen:

[mm] H^2\cos^{2}z+H^2\sin^{2}z=\left( F_{1}\sin x+F_{2}\sin y\right)^{2}+\left( -F_{1}\cos x+F_{2}\cos y\right)^{2} [/mm]

[mm] H^2\left( \cos^{2}z+\sin^{2}z\right)= F_{1}^{2}\sin^{2} x+F_{2}^{2}\sin^{2} y +2F_{1}F_{2}\sin x\sin y +F_{1}^{2}\cos^{2} x+F_{2}^{2}\cos^{2} y -2F_{1}F_{2}\cos x\cos y [/mm]
[mm] H^2 =F_{1}^{2}\left( \sin^{2} x+\cos^{2} x\right) +F_{2}^{2}\left( \sin^{2} y+\cos^{2} y\right) -2F_{1}F_{2}\left( -\sin x\sin y+\cos x\cos y\right) [/mm]

[mm] H^{2}=F_{1}^{2}+F_{2}^{2}-2F_{1}F_{2}\cos\left( x+y\right) [/mm]

Du berücksichtigst hier die trigonometrischen Formeln:

[mm]\sin^{2}x+\cos^{2}x=1[/mm]
[mm]\cos(x+y)=\cos x\cos y-\sin x\sin y[/mm]

Versuche es nachzuvollziehen!

Viele Grüße, galileo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]