www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesAdjungierte Abbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Adjungierte Abbildungen
Adjungierte Abbildungen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Adjungierte Abbildungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Di 28.04.2009
Autor: Heureka89

Ich versuche für ein f aus [mm] End_k(V) [/mm] zu beweisen:

[mm] Bildf^\sim [/mm] = [mm] (Kernf)^\perp (f^\sim [/mm] soll die adjungierte Abbildung zu f sein)

Also ich schaffe es zu beweisen, dass die Dimensionen gleich sind, aber sonst habe ich keinen Ansatz. Die Gleichheit der Dimensionen reicht nicht aus, oder?

        
Bezug
Adjungierte Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:47 Mi 29.04.2009
Autor: felixf

Hallo!

> Ich versuche für ein f aus [mm]End_k(V)[/mm] zu beweisen:
>  
> [mm]Bildf^\sim[/mm] = [mm](Kernf)^\perp (f^\sim[/mm] soll die adjungierte
> Abbildung zu f sein)
>  
> Also ich schaffe es zu beweisen, dass die Dimensionen
> gleich sind,

Wenn es ein endlichdimensionaler Vektorraum ist ist das schonmal ein guter Ansatz.

> aber sonst habe ich keinen Ansatz. Die
> Gleichheit der Dimensionen reicht nicht aus, oder?

Nein, die reicht nicht. Aber die Inklusion $Bild [mm] \tilde{f} \subseteq (\ker f)^\perp$ [/mm] ist recht einfach zu zeigen. Was kannst du hier annehmen und was bedeutet die Bedingung, dass etwas in [mm] $(\ker f)^\perp$ [/mm] ist?

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]