www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAffine Unterräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Affine Unterräume
Affine Unterräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Affine Unterräume: Frage zum Beweis
Status: (Frage) beantwortet Status 
Datum: 10:59 Di 08.03.2005
Autor: wetterfrosch

Hallo!
Diese Aufgabe haben wir bereits gelöst, aber ich verstehe manche Schritte nicht, deshalb bitte ich, dass mir jemand die mir unklaren Schritte erklärt. Danke.
Aufgabe:
Sei V ein K-Vektorraum, und seien x [mm] \in [/mm] V und U ein Unterraum von V.
Sei L= x+U der durch x und U gegebene affine Unterraum von V.
Zu zeigen ist:
a) Ist y [mm] \in [/mm] L, so ist L= y+U

Lösung: Diese Lösung habe ich verstanden:

Es gilt: Sei L= x+U. Dann gilt für alle y [mm] \in [/mm] V: [mm] y\in [/mm] L gdw x-y [mm] \in [/mm] U.
Sei nun y [mm] \in [/mm] L.
Dann: y=x+z für ein z [mm] \in [/mm] U, also x= y-z. Daraus folgt, dass L=y-z+U, also L= y+U, da z [mm] \in [/mm] U.   q.e.d

b) Seien   [mm] y_{0}, y_{1}, y_{2} \in [/mm] Lpaarweise verschieden. Für alle eindimensionalen Unterräume U'  [mm] \subseteq [/mm] U sei   [mm] y_{1} \not\in y_{0}+U' [/mm] oder  [mm] y_{2} \not\in y_{0}+U'. [/mm]
Zu ziegen ist, dass  [mm] y_{1}- y_{0} [/mm] und  [mm] y_{2}- y_{0} [/mm] linear unabhängig sind.

Diese Lösung habe ich nicht verstanden, kann sie mir bitte jemand erläutern? Also hier die Lösung:

U'  [mm] \subseteq [/mm] U, dum U = dim U' = 1, d.h. n= 1.
Sei L=  [mm] y_{0}+U' [/mm]
Es gilt  [mm] y_{1}- y_{0}, y_{2}- y_{0} [/mm] sind linear unabhängig
gdw dim < {  [mm] y_{1}- y_{0}, y_{2}- y_{0}}> [/mm] = 2 ist (Warum gleich 2???)
gdw Dimension von L =  [mm] y_{0}+U' [/mm] größer 1 ist (Warum größer 1???)
gdw für alle URe der Dimension 1  [mm] y_{1} \not\in y_{0}+U' [/mm] oder  [mm] y_{2} \not\in y_{0}+U' [/mm] ist.

Ich kapier die Lösung der Aufgabe b) nicht.
Vielen Danke für eine Erklärung.


        
Bezug
Affine Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Di 08.03.2005
Autor: felixs

morgen

> Diese Lösung habe ich nicht verstanden, kann sie mir bitte
> jemand erläutern? Also hier die Lösung:
>  
> U'  [mm]\subseteq[/mm] U, dum U = dim U' = 1, d.h. n= 1.
>  Sei L=  [mm]y_{0}+U'[/mm]
>  Es gilt  [mm]y_{1}- y_{0}, y_{2}- y_{0}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

sind linear unabhängig

> gdw dim < {  [mm]y_{1}- y_{0}, y_{2}- y_{0}}>[/mm] = 2 ist (Warum
> gleich 2???)

angenommen die dimension von dem teil ist nicht 2. dann muss sie 1 sein. also sind die beiden vektoren im selben eindimensionalen UR. dann sind sie aber lin. abh. (widerspruch)

andersrum: wenn die dimension von dem erzeugnis 2 ist, dann sind die vektoren lin. unabhaengig, da sonst die dimension vom erz. ja 1 waere...


>  gdw Dimension von L =  [mm]y_{0}+U'[/mm] größer 1 ist (Warum größer 1???)

gemeint ist hier wahrscheinlich dass die dimension von dem erzeugnis von [mm] $y_0$ [/mm] und $U'$ groesser 1 ist. [mm] $\dim(U')$ [/mm] war ja nach vorauss. 1. (etwas seltsame notation, oder vielleicht habe ich tomaten auf den augen).

vielleicht hilft das ja ein wenig.
--felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]