www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAffiner Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Affiner Raum
Affiner Raum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Affiner Raum: Problem
Status: (Frage) beantwortet Status 
Datum: 17:32 So 12.12.2004
Autor: misterbecks

Tach,

vielleicht kann mir jemand bei dem folgenden Problem helfen:

In [mm] \IR^{4} [/mm] habe ich drei Vektoren:

[mm] u_{1}=\pmat{ 2 \\ 3 \\ -1 \\ 1 }, u_{2}=\pmat{ 1 \\ 4 \\ 0 \\ 0 }, u_{3}=\pmat{ 1 \\ 2 \\ -2 \\ 1 } [/mm]

und

[mm] b_{L}=\pmat{ 2 \\ 1 \\ 0 \\ 4 } [/mm]

Der affine UR ist [mm] L=b_{L}+U [/mm] und [mm] U=span(u_{1},u_{2},u_{3}). [/mm]

Finde lin. Gleichungssysteme [mm] A_{L}x=c_{L}, [/mm] so dass [mm] L={x\in\IR^{4}|A_{L}x=c_{L}}. [/mm]

Nun habe ich schon mal für [mm] L=x_{1}\pmat{ 4 \\ 4 \\ -1 \\ 1 }+x_{2}\pmat{ 3 \\ 5 \\ 0 \\ 0 }+x_{3}\pmat{ 3 \\ 3 \\ -1 \\ 1 }. [/mm]

Es geht da doch darum, zu den Vektoren ohne x ein geeignetes GS zu finden, das mit einem anderen x [mm] c_{L} [/mm] ergibt, oder? Die Aufgabe wurde hier schon mal gelöst, allerdings in der umgekehrten Reihenfolge und so ganz komme ich da nicht mit!

        
Bezug
Affiner Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Sa 18.12.2004
Autor: Stefan

Hallo misterbecks!

Hier wird sehr schön von Paul erklärt, wie man die Aufgabe löst. Für affine Unterräume geht es völlig analog. Finde erst mit dem Unterraum ein homogenes LGS (wie von Paul angedeutet), der Rest ist dann einfach.

Versuche es doch einfach mal und melde dich mit einem Lösungsvorschlag! :-)

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]