www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesAffiner Raum - Koo. berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Affiner Raum - Koo. berechnen
Affiner Raum - Koo. berechnen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Affiner Raum - Koo. berechnen: Aufgabe
Status: (Frage) überfällig Status 
Datum: 00:30 Do 27.11.2008
Autor: uniklu

Aufgabe
Durch die Punkte [mm] S_0 [/mm] = (0,1,-1,2), [mm] S_1 [/mm] = (2,2,-3,2), [mm] S_2 [/mm] = (0,2,0,1) wird der affine Raum B aufgespannt
a) Bestimme [mm] x_3, x_4 [/mm] so, dass A = [mm] (2,-1,x_3, x_4) \in [/mm] B gilt und gib die Koordinaten von A bezüglich S = [mm] (S_0, S_1, S_2) [/mm] an.
b) Zeige, dass [mm] P_0 [/mm] = (4,2,-6,3), [mm] P_1 [/mm] = (2,3,-2,1) und [mm] P_2 [/mm] = (2,1,-4,3) ein affines Koordinatensystem Sneu von B bilden. Bestimme die Koordinatentransformationsmatrix T von S -> Sneu, den Translationsvektor t von S -> Sneu und die Koordinaten von A bezüglich Sneu mittels Definition und mittels der Koordinatentransformationsformel.

Hallo!

ad a)
[mm] x_3 [/mm] und [mm] x_4 [/mm] kann man gleich berechnen
Einfach die Ebenengleichung angeben und einsetzen.
Damit ergibt sich der Vektor A mit [mm] \vektor{2 \\ -1 \\ -6 \\ 5}. [/mm]

Nun die erste Frage: Wie berechne ich die Koordinaten von A bezüglich S?
Ich habe aus einem ähnlichen Bsp folgendes aufgeschnappt

[mm] \pmat{ S_0 & S_1 & S_2 & A} [/mm]
Einmal den Gauß Eliminationsalgorithmus angewandt
und schon sollte die Koordinaten von A bez S haben.
In meinem Fall habe ich hier mit Mathematica gerechnet
Als Lösung bekam ich (0,0,0,0).


ad b)

Wie zeige ich, dass es sich um ein affines Koordinatensystem Sneu von B handelt?


Transformationsmatrix ist mir auch klar, sowie auch der Vektor t.

komischerweise ist T eine 2x2 Matrix und t ein Vektor mit 2 Elementen.
Wenn ich nun Aneu ausrechnen soll - mittels der Koordinatentransformationsformel, komme ich in Konflikt mit den Dimensionen

[x]_neu = T^(-1) * [X]_alt - T^(-1) * t

[x]_alt ist ja ein Vektor mit 4 Elemente - also A.

Was mache ich falsch?

bitte um hilfe

        
Bezug
Affiner Raum - Koo. berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:40 Do 27.11.2008
Autor: steppenhahn

Hallo!

Zu a)

Du hast deinen Punkt berechnet (nachgerechnet habe ich leider nicht, aber ich denke wenn du dir sicher bist klappt das schon :-) ). Den Punkt bezüglich der Basis auszudrücken heißt, du sollst eine Linearkombination der Basisvektoren (hier [mm] S_{0}, S_{1}, S_{2}) [/mm] finden, sodass der Punkt rauskommt.

D.h. löse (mathematisch nicht toll, aber immerhin)

P = [mm] \lambda_{1}*S_{0} [/mm] + [mm] \lambda_{2}*S_{1} [/mm] + [mm] \lambda_{3}*S_{3} [/mm]

Deine Lösung ist der dreidimensionale Vektor

[mm] \vektor{\lambda_{1} \\ \lambda_{2} \\ \lambda_{3}} [/mm]

Stefan.

Bezug
        
Bezug
Affiner Raum - Koo. berechnen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Sa 29.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]