www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnung(Allg.) Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - (Allg.) Beweis
(Allg.) Beweis < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Allg.) Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:13 Sa 01.12.2007
Autor: engel

Hallo!

Kann man eigentlich beweisen, ganz allgemein, dass wenn f(x) an der Stelle x0 ein Maximum hat, das dann auch f²(x) an dieser Stelle ein Maximum hat?

Das würde mich wirklich mal interessieren, auch wenne s kein Schulstoff ist.

        
Bezug
(Allg.) Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Sa 01.12.2007
Autor: rainerS

Hallo engel!

> Kann man eigentlich beweisen, ganz allgemein, dass wenn
> f(x) an der Stelle x0 ein Maximum hat, das dann auch f²(x)
> an dieser Stelle ein Maximum hat?

Ein Extremum, ja. Ob Maximum oder Minimum, hängt vom Vorzeichen von [mm]f(x_0)[/mm] ab.

Wenn f(x) ein Maximum hat, hat -f(x) ein Minimum und umgekehrt, aber andererseits ist das Quadrat beider Funktionen gleich: [mm](-f)^2(x)= =f^2(x)[/mm].

Beispiel:
[mm]f(x)=x^4-2*x^2-1[/mm] hat bei [mm]x_0=1[/mm] ein Maximum mit Funktionswert -1.
[mm]f^2(x)=(x^4-2*x^2-1)^2[/mm] hat ein Minimum.

Man kann's auch recht einfach formal nachrechnen.

Viele Grüße
   Rainer

Bezug
                
Bezug
(Allg.) Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Sa 01.12.2007
Autor: engel

Hallo!

f(x) hat ein Maximum dann hat f²(x) an der gleichen stelle ein maximum.

f(x) = x²

f'(x) = 2x

Extremum bei x=0

f²(x) = [mm] x^4 [/mm]

f'(x) = 4x³

Extremum bei x=0

Habe ich das so beweisen?

Bezug
                        
Bezug
(Allg.) Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Sa 01.12.2007
Autor: leduart

Hallo
Nein, 1. [mm] x^2 [/mm] hat bei [mm] x^2 [/mm] kein Max sondern ein Min!
2. ein Beispiel ist kein Beweis:
sonst wäre richtig: alle ungeraden Zahlen sind Primzahlen 3,5,7 stimmt, noch zufällig ne grössere 37 stimmt auch. Beweis fertig.!
Deine Rechnung kann höchstens dich auf die Idee bringen, dass das richtig ist!
Beweis in Worten:
Wenn f(x) ein Max hat UND da einen positiven Wert, sind alle Werte daneben kleiner und auch positiv. dann hat [mm] f^2(x) [/mm] da auch ein Max, denn wenn ne Zahl>0 gilt dass die größere Zahl das grössere Quadrat hat.
Wenn f ein Max hatbei x1, und f(x1)<0, dann hat [mm] f^2(x) [/mm] ein Min, überlkeg selbst warum.
Beweis mit Rechnen:
[mm] (f^2(x))'=2f(x)*f'(x) [/mm]  wenn f'(x)=0 folgt [mm] (f^2(x))'=0 [/mm] also auf jeden Fall hat [mm] f^2 [/mm] auch ne waagerechte Tangente!
Max: f''<0  [mm] (f^2(x))''=2f*f'' [/mm] +2f'^2 an der betrachteten Stelle x1 ist f'(x1)=0
also [mm] f^2(x1))''=2f(x1)f''(x1) [/mm] wenn f(x1)>0 hat [mm] f^2(x1))'' [/mm] dasselbe Vorzeichen wie f''(x1).
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]