Allgemeine Dichte einer ZG < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:27 Di 05.06.2012 | Autor: | dimi727 |
Aufgabe | Seien X und Y unabhängige, identisch verteilte reelle Zufallsgrößen mit stetiger Dichte [mm] f:\IR [/mm] -> [mm] [0,\infty). [/mm] Zeigen Sie, dass die Zufallsgröße
[mm] Z(w)=\begin{cases} \bruch{X(w)}{Y(w)}, & \mbox{falls } Y(w) \mbox{ ungleich 0} \\ 0, & \mbox{ } \mbox{ sonst} \end{cases}
[/mm]
ebenfalls eine Dichte besitzt und berechnen Sie diese
i) allgemein
ii)für die gleichförmige Verteilung auf [0,a] mit a>0
iii)für die Exponentialverteilung mit Parameter [mm] \lambda [/mm] > 0 |
Hi,
ich brauche erstmal Hilfe bei i). Versuche gerade das Verfahren,was unser Übungsleiter uns näherbringen wollte, zu verstehen und anzuwenden.
ich wollte über die Verteilungsfunktion gehen :
[mm] F_{p}(t) [/mm] = [mm] P(p\le [/mm] t) = [mm] P(\bruch{X}{Y}\le [/mm] t) = [mm] \integral_{A}^{}\integral_{}^{}{f_{X,Y}(x,y)dx dy}
[/mm]
wobei wir für A wählen(1 Fall mit t < 0) : A(t) = { [mm] (x,y)\in \IR^{2} [/mm] | [mm] \bruch{x}{y} \le [/mm] t } = { [mm] (x,y)\in \IR^{2} [/mm] | x [mm] \ge [/mm] ty } ={ [mm] (x,y)\in \IR^{2} [/mm] | [mm] -\infty [/mm] < yt [mm] \le [/mm] x, [mm] -\infty [/mm] < x < [mm] \infty [/mm] }
Dann ergibt sich für diese Aufgabe :
[mm] \integral_{-\infty}^{yt}\integral_{-\infty}^{0}{f_{X,Y}(x,y)dx dy} [/mm] + [mm] \integral_{yt}^{\infty}\integral_{0}^{\infty}{f_{X,Y}(x,y)dx dy}
[/mm]
Dann substituieren wir : x = ty und erhalten außerdem dx = dt*y, wobei ich nicht verstehe,warum mein Tutor wegen der Substitution plötzlich von z bis [mm] -\infty [/mm] integriert? Ist das so korrekt? Also :
[mm] \integral_{-\infty}^{yt}\integral_{-\infty}^{0}{y*f_{X,Y}(ty,y) dt dy} [/mm] + [mm] \integral_{yt}^{-\infty}\integral_{0}^{\infty}{y*f_{X,Y}(ty,y) dt dy}
[/mm]
Dann hatten wir im Tutorium bei einer ähnlichen Aufgabe (Produkt anstelle des Quotienten),dass wir hier den Kehrwert nehmen, um das Intervall umdrehen und den Fubini-Satz anwenden zu können, dort haben wir aber nur das innere Integral damit verändert..hier wirds irgendwie nicht hinhauen? ...
[mm] \integral_{-\infty}^{yt}\integral_{-\infty}^{0}{y*f_{X,Y}(x,xt)dt dy} [/mm] + [mm] \integral_{-\infty}^{yt}\integral_{0}^{\infty}{-y*f_{X,Y}(ty,y)dt dy}=
[/mm]
[mm] \integral_{-\infty}^{yt}\integral_{-\infty}^{\infty}{|y|*f_{X,Y}(ty,y)dt dy} [/mm]
Hier wäre ich am Ende(für den Fall t <0) und habe ein flaues Gefühl,dass ich sehr viele Fehler gemacht habe.
Hoffe es ist alles verständlich,was ich gemacht habe.
EDIT: Sorry, hatte ein paar verdreher drin. Habe jetzt ein paar stellen korrigiert.
|
|
|
|
Hallo dimi727,
> Seien X und Y unabhängige, identisch verteilte reelle
> Zufallsgrößen mit stetiger Dichte [mm]f:\IR[/mm] -> [mm][0,\infty).[/mm]
> Zeigen Sie, dass die Zufallsgröße
>
> [mm]Z(w)=\begin{cases} \bruch{X(w)}{Y(w)}, & \mbox{falls } Y(w) \mbox{ ungleich 0} \\ 0, & \mbox{ } \mbox{ sonst} \end{cases}[/mm]
>
> ebenfalls eine Dichte besitzt und berechnen Sie diese
> i) allgemein
> ii)für die gleichförmige Verteilung auf [0,a] mit a>0
> iii)für die Exponentialverteilung mit Parameter [mm]\lambda[/mm] >
> 0
>
>
> Hi,
>
> ich brauche erstmal Hilfe bei i). Versuche gerade das
> Verfahren,was unser Übungsleiter uns näherbringen wollte,
> zu verstehen und anzuwenden.
>
> ich wollte über die Verteilungsfunktion gehen :
>
> [mm] F_{p}(t)= P(p\le [/mm] t) [mm] =P(\bruch{X}{Y}\le [/mm] t) = [mm] \integral_{A}^{}\integral_{}^{}{f_{X,Y}(x,y)dx dy}
[/mm]
>
> wobei wir für A wählen(1 Fall mit t < 0) :
> A(t) = [mm] \{ (x,y)\in \IR^{2} | \bruch{x}{y} \le t \} [/mm] = [mm] \{(x,y)\in \IR^{2} | x \ge ty \} =\{(x,y)\in \IR^{2} |-\infty < yt\le x, -\infty < x < \infty \}
[/mm]
Das stimmt m. E. so nicht. Hier ist eine Fallunterscheidung nach dem Vorzeichen von y nötig. Ich komme dabei auf das Integrationsgebiet
[mm] A(t)=\{(x,y)\in\IR^2, x\le ty, y>0\}\cup\{(x,y)\in\IR^2, x\ge ty, y<0\}
[/mm]
Das liefert dann
[mm] \integral_{A(t)}^{}\integral_{}^{}{f_{X,Y}(x,y)dx dy}=\int_0^\infty \left(\int_{-\infty}^{ty}f_{X,Y}(x,y) dx\right)dy+\int_{-\infty}^0 \left(\int_{ty}^{\infty} f_{X,Y}(x,y) dx\right)dy
[/mm]
Nun kann man die Substitution z:=ty durchführen.
LG
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:36 Di 05.06.2012 | Autor: | dimi727 |
Ok ich rechne das gleich mal schnell so durch, aber :
ist es nicht egal, nach was ich unterscheide? ich wollte halt nach dem t unterscheiden. Wenn t < 0 ist, muss y oder x kleiner 0 sein, somit ergibt sich immer x [mm] \ge [/mm] ty ?
Edit : Ach tatsächlich,bei dir fasst du die 2 Fälle schon in der Summe der zwei Integrale ja zusammen? ODer?
|
|
|
|
|
> Ok ich rechne das gleich mal schnell so durch, aber :
>
> ist es nicht egal, nach was ich unterscheide? ich wollte
> halt nach dem t unterscheiden. Wenn t < 0 ist, muss y oder
> x kleiner 0 sein, somit ergibt sich immer x [mm]\ge[/mm] ty ?
Die Fallunterscheidung nach y wird notwendig, da sich das Relationszeichen der Ungleichung [mm] $\frac{x}{y}\le [/mm] t$ bei Multiplikation mit y in Abhängigkeit vom Vorzeichen von y ändern kann.
>
> Edit : Ach tatsächlich,bei dir fasst du die 2 Fälle schon
> in der Summe der zwei Integrale ja zusammen? ODer?
Ja.
>
>
LG
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 18:08 Di 05.06.2012 | Autor: | dimi727 |
Ahso ich muss ja unabhängig davon immernoch meine Fallunterscheidung für t <0 und t > 0 machen?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Do 07.06.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 17:57 Di 05.06.2012 | Autor: | dimi727 |
Also ich habe dann Subst z = ty => dz = dyt => dz/t = dy :
$ [mm] \integral_{A(t)}^{}\integral_{}^{}{f_{X,Y}(x,y)dx dy}=\int_0^\infty \left(\int_{-\infty}^{ty}f_{X,Y}(x,y) dx\right)dy+\int_{-\infty}^0 \left(\int_{ty}^{\infty} f_{X,Y}(x,y) dx\right)dy [/mm] $ =
[mm] \int_0^\infty \left(\int_{-\infty}^{z}\bruch{1}{t}f_{X,Y}(x,\bruch{t}{z}) dx\right)dz+\int_{-\infty}^0 \left(\int_{z}^{\infty}\bruch{1}{t}f_{X,Y}(x,\bruch{t}{z}) dx\right)dz [/mm] = ??
Und wie fasse ich hier zusammen? Wie kam jetzt wie von mir erwähnt es dazu,dass nach der Substitution aus dem einen Unendlich ein minus Unendlich wurde? Sehe gerade nicht,wie ich das zusammenfassen könnte außer halt vlt :
$ [mm] \integral_{-\infty}^{\infty}\integral_{-\infty}^{\infty}{\bruch{1}{t}\cdot{}f_{X,Y}(x,\bruch{t}{z})dx dz} [/mm] $
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Do 07.06.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|