www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesAllgemeine Lösung einer DG
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Allgemeine Lösung einer DG
Allgemeine Lösung einer DG < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeine Lösung einer DG: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:48 Mi 29.09.2004
Autor: Steirerman

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
Link: http://www.matheboard.de/thread.php?sid=&postid=63040#post6304

da kann(oder will) mir aber keiner mehr weiterhelfen.

Thx

Peter

        
Bezug
Allgemeine Lösung einer DG: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:11 Mi 29.09.2004
Autor: Stefan

Hallo Steirerman!

Da man auf dieses Forum aus Gründen des Jugendschutzes nicht mehr verlinken kann, hier noch einmal die Differentialgleichung:

[mm] $-2*\cos(x)*\cos(y)+4*\sin(x)*\sin(y)*y'=0$. [/mm]

Ich selber habe wenig Ahnung davon und würde es einfach mal mit einer Trennung der Variablen versuchen, aber vermutlich ist der Ansatz zu naiv. Vielleicht kann dir hier ja jemand weiterhelfen.

Liebe Grüße
Stefan

Bezug
                
Bezug
Allgemeine Lösung einer DG: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:26 Mi 29.09.2004
Autor: Steirerman

Also hier nochmal die ganze Frage:
Zeigen Sie, daß y(y) = cos(y) eine integrierender Faktor der folgenden Differenzialgleichung ist und bestimmen Sie ihre allgemeine Lösung in impliziter Form!
Das mit dem Beweisen ist ja kein Problem, aber wie bestimm ich ihre allgemeine Lösung???????????
P.S:Ich kenn mich mit DG überhaupt nicht aus.


Thx

Peter

Bezug
                        
Bezug
Allgemeine Lösung einer DG: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 Mi 29.09.2004
Autor: Paulus

Hallo Peter

sollte wohl eher so heissen: (sind wohl die Tücken von cut & paste ;-))

Zeigen Sie, daß $y(y) = cos(y)$ eine integrierender Faktor
der folgenden Differenzialgleichung ist und bestimmen Sie
ihre allgemeine Lösung in impliziter Form!

$-2*cos(x)*cos(y)+4.sin(x)*sin(y)*y'=0$

Das mit dem Beweisen ist ja kein Problem, aber wie bestimm
ich ihre allgemeine Lösung???????????

P.S:Ich kenn mich mit DG überhaupt nicht aus.


Thx

Peter

Stimmt es so?

Mit lieben Grüssen

Paul

Bezug
                                
Bezug
Allgemeine Lösung einer DG: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:26 Mi 29.09.2004
Autor: Steirerman

Ja, genau!

Bezug
                        
Bezug
Allgemeine Lösung einer DG: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 Do 30.09.2004
Autor: Irrlicht

Hallo Steirerman,

Ich zitiere mal die Antwort von Leopold (der hier im Matheraum ja auch existiert) aus dem Matheboard:

Die Differentialgleichung
[mm]-2 \cos{x} \cos{y} \ \mbox{d}x+4 \sin{x} \sin{y} \ \mbox{d}y=0[/mm]
wird durch Multiplikation mit [mm]\cos{y}[/mm] exakt, d.h. die Differentialform
[mm]\omega = -2 \cos{x} \cos^2{y} \ \mbox{d}x + 4 \sin{x} \sin{y} \cos{y}\ \mbox{d}y[/mm]
ist totales Differential einer Funktion F=F(x,y), hier von [mm]F=-2 \sin{x} \cos^2{y}[/mm]:
[mm]\mbox{d}F = \omega[/mm]



Formal kann man die Differentialgleichung P(x,y) + Q(x,y)*y' = 0 auch schreiben als P dx + Q dy = 0 (man kann y' = dy/dx schreiben und formal mit dx multiplizieren). In dieser Form hat die Gleichung die Gestalt eines totalen Differentials. Wenn sie tatsächlich ein totales Differential ist, dann nennt man die Differentialgleichung exakt. (Vergleiche meine Antwort auf deinen ersten Beitrag im Strang.)

Leopolds [mm] \omega [/mm] (omega) ist einfach nur ein Kürzel.

Nun ist deine Differentialgleichung am Anfang ja nicht exakt, kann aber durch Multiplikation mit cos(y) zu einer exakten Dgl umgewandelt werden. Solch einen Faktor nennt man integrierenden Faktor.

Da Leopold die Lösungsfunktion F bereits genannt hat, musst du nur noch prüfen, dass die neuen Werte von P und Q gerade die partiellen Ableitungen von F sind. Die Lösungen der Differentialgleichung sind dann die implizit gegebenen Funktionen y, die F(x,y(x)) = C für eine Konstante C erfüllen.

Bei Fragen bitte schreien. ;-)

Lieben Gruss,
Irrlicht




Bezug
                                
Bezug
Allgemeine Lösung einer DG: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:06 Do 30.09.2004
Autor: Steirerman

So weit so gut (vielen Dank) aber vieleicht könnten wir mal die praxis durchgehen:
-2*cos(x)*cos(y)+4*sin(x)*sin(y)*y' = 0 kann ich auch so darstellen:
-2*cos(x)*cos(y)*dx+4*sin(x)*sin(y)*dy=0
Und wenn ich das ganze mit dem integrierenden Faktor cos(y) mult.:
[mm] -2*cos(x)*(cos(y))^2*dx+4*sin(x)*sin(y)*cos(y)*dy [/mm] =w

Ok, wenn ich F = [mm] -2*sin(x)*cos(y)^2 [/mm] nach dx dann komme ich auf P und nach dy auf Q.
Aber wie komm ich auf das F ??????? Un mit folgenden Satz:
"Die Lösungen der Differentialgleichung sind dann die implizit gegebenen Funktionen y, die F(x,y(x)) = C für eine Konstante C erfüllen." fang ich leider überhaupt nichts an.

Wäre toll wenn du mir da nochmal weiterhelfen würdest.

Bezug
                                        
Bezug
Allgemeine Lösung einer DG: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Do 30.09.2004
Autor: Irrlicht

Hallo Steirerman,

Ich kann dir eine Art Fahrplan für solche Dgls geben:

Integriere P nach x, wobei y als Konstante aufgefasst wird. Du erhälst eine Funktion F(x,y), in diesem Fall ist es die Funktion
$F(x,y) =  -2 [mm] cos^2(y) [/mm] sin(x) + C$. Die Integrationskonstante C fasst du als Funktion in y auf, also als C(y).
Du leitest dann F(x,y) nach y ab und setzt das Ergebnis gleich Q. Damit erhälst du eine Differentialgleichung für C(y). Hier ist die Differentialgleichung C'(y) = 0, also C(y) = c konstant.

Du könntest genauso gut anfangen, indem du Q nach y integrierst und die entstehende Funktion mit von x abhängiger Integrationskonstante nach x ableitest und gleich P setzt. Je nachdem wie P und Q aussehen, ist der eine oder der andere Weg einfacher.


Zu deiner letzten Frage:
Wir haben F so gewählt, dass [mm] $D_1 [/mm] F = P$ ist und [mm] $D_2 [/mm] F = Q$. Der Satz über implizite Funktionen sagt nun, dass unter bestimmten nur von F abhängigen Bedingungen (auf die wir hier erstmal nicht näher eingehen wollen) eine Funktion y existiert mit der Eigenschaft F(x,y(x)) = 0.
Leiten wir die Gleichung F(x,y(x)) = 0 nach x ab, erhalten wir
[mm] $D_1 [/mm] F(x,y(x)) + [mm] D_2 [/mm] F(x,y(x))*y'(x) = 0$
Die Funktion y ist damit eine Lösung der ursprünglichen Differentialgleichung. Ersetzen wir die Funktion F durch F + c für eine Konstante c, erhalten wir weitere Lösungen der Differentialgleichung, die der Gleichung F(x,y(x)) = -c genügen.

Ist es dir nun klarer geworden? *das mal hoffe*

Lieben Gruss,
Irrlicht

Bezug
        
Bezug
Allgemeine Lösung einer DG: Kleiner Diskurs zu exakten Dgl.
Status: (Antwort) fertig Status 
Datum: 12:29 Do 30.09.2004
Autor: Irrlicht

Hallo Steirerman,

Erstmal wiederhole ich für die Unwissenden hier, was eine exakte Differentialgleichung ist und was man unter einem integrierenden Faktor versteht.

Die Differentialgleichung P(x,y)dx + Q(x,y)dy = 0 heisst exakt, wenn es eine stetig differentierbare Funktion F von einem (sternförmigen) Gebiet in die reellen Zahlen gibt mit grad F = (P,Q).

Sind P und Q stetig differenzierbar in dem sternförmigen Gebiet G, dann ist die Dgl
P dx + Q dy = 0
genau dann exakt, wenn
[mm] Q_x [/mm] = [mm] P_y [/mm]
[mm] (Q_x [/mm] sei die partielle Ableitung von Q nach x, analog [mm] P_y). [/mm]

Eine Dgl obiger Form muss nicht unbedingt exakt sein, aber manchmal kann man sie duch Multiplikation mit einem sogenannten integrierenden Faktor in eine exakte Dgl überführen.

Gruss,
Irrlicht
(die das obige aus dem Repetitorium der gewöhnlichen Differentialgleichungen von Timmann zitiert hat)



Bezug
                
Bezug
Allgemeine Lösung einer DG: Kleiner Diskurs zu exakten Dgl.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Do 30.09.2004
Autor: Stefan

Liebe Alex!

Vielen Dank für die sehr schönen Ausführungen! :-) Stimmt, ich erinnere mich schwach. Vielleicht kannst du mich ja verbessern, wenn ich Unsinn redet. ;-)

Man fasst also die Differentialgleichung als Pfaffsche Form

[mm] $\omega [/mm] = Pdx + Qdy$

auf und fordert [mm] $Q_x=P_y$, [/mm] damit [mm] $\omega$ [/mm] wegen

[mm] $d\omega [/mm] = [mm] P_y [/mm] dy [mm] \wedge [/mm] dx + [mm] Q_x [/mm] dx [mm] \wedge [/mm] dy = [mm] (Q_x [/mm] - [mm] P_y) [/mm] (dx [mm] \wedge [/mm] dy)=0$

geschlossen ist. Nach dem Lemma von Poincaré (daher braucht man auch die Sternförmigkeit) ist dann [mm] $\omega$ [/mm] auch exakt.

Ist das die Begründung? Ich hoffe, denn es ist zehn Jahre her, dass ich das zum letzten Mal gesehen habe. ;-)

Liebe Grüße
Stefan

Bezug
                        
Bezug
Allgemeine Lösung einer DG: Kleiner Diskurs zu exakten Dgl.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:25 Do 30.09.2004
Autor: Irrlicht

Hallo Stefan,

mein Skript und das Internet meinen "Ja". Ich selbst kann dir das jetzt nicht bestätigen. Differentialgleichungen sind einfach nicht mein Gebiet (links rein rechts raus). Da kann ich nur hoffen, dass "mein Gebiet" auch sternförmig ist, dann hab ich ja vielleicht auch eine Chance, exakt zu sein. *kicher*

Lieben Gruss,
Irrlicht

Bezug
                                
Bezug
Allgemeine Lösung einer DG: Kleiner Diskurs zu exakten Dgl.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:52 Do 30.09.2004
Autor: Stefan

Liebe Alex!

Auf jeden Fall bist du ein leuchtender Stern am Matheraum-Himmel. :-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]