www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAllgemeine fragen zu Basen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Allgemeine fragen zu Basen
Allgemeine fragen zu Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeine fragen zu Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:17 So 11.12.2005
Autor: AriR

/ Frage von mir nicht zuvor gestellt

Hey Leute mal eine allgemeinere Frage zu Basen eines k-Vektorraums:

Es gilt ja:
n Linear unabhängige Vektoren bilden im n-dimensionalen Vektorraum immer eine Basis.

Hat einer von euch eine logische erklärung oder den Beweis zu dieser Aussage??

Diese Aussage ist doch auch nur richtig, wenn den ganzen n-dimensinalen Vektorraum betrachtet und keine Unterräume dieses Vektorraums oder?

würde mich SEHR über eine antwort freuen.. gruß ari

        
Bezug
Allgemeine fragen zu Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:20 So 11.12.2005
Autor: Stefan

Hallo Ari!

> Es gilt ja:
> n Linear unabhängige Vektoren bilden im n-dimensionalen
> Vektorraum immer eine Basis.
>
> Hat einer von euch eine logische erklärung oder den Beweis
> zu dieser Aussage??

Sind [mm] $v_1,\ldots, v_n$ [/mm] linear unabhängig, dann ist [mm] $Span(v_1,\ldots,v_n)$ [/mm] ein $n$-dimensionaler Unterraum des $n$-dimensionalen Vektorraums $V$, woraus (aus Sätzen, die ihr sicherlich im Skripet stehen habt)

$V=  [mm] Span(v_1,\ldots,v_n)$ [/mm]

folgt.

Oder: Gäbe es ein Element $v [mm] \in [/mm] V [mm] \setminus Span(v_1,\ldots,v_n)$, [/mm] dann wäre ja auch [mm] $\{v_1,\ldots,v_n,v\}$ [/mm] linear unabhängig, also  [mm] $Span(v_1,\ldots,v_n,v) \subset [/mm] V$ von größerer Dimension als $V$ selbst, Widerspruch.

Ein genauer Beweis der Aussage hängt davon ab, welche Definitionen und Sätze ihr genau zur Verfügung habt.  

> Diese Aussage ist doch auch nur richtig, wenn den ganzen
> n-dimensinalen Vektorraum betrachtet und keine Unterräume
> dieses Vektorraums oder?

[ok]

Liebe Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]