www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeAnalyse nach Leontjef
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Analyse nach Leontjef
Analyse nach Leontjef < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analyse nach Leontjef: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Do 22.03.2018
Autor: sancho1980

Hallo!

Bei der Input-Output-Analyse nach Leontjef lautet die Formel zur Ermittlung der Produktionsmenge x:

x = (I - [mm] A)^{-1} [/mm] b

I ... Identitätsmatrix
A ... Produktionsmatrix
b ... externe Nachfrage

In meinem Lehrbuch steht weiters dazu:

"Dabei stellen sich zwei Fragen: Wann ist die Matrix (I − A) invertierbar und wann sind alle Koeffizienten der Inversen nichtnegativ? Die letzte Bedingung ist wichtig, da sich für beliebigen Nachfragevektor b mit [mm] b_{j} [/mm] ≥ 0 auch ein Lösungsvektor x mit [mm] x_{j} [/mm] ≥ 0 ergeben muss! Das ist aber genau dann der Fall, wenn alle Koeffizienten der inversen Matrix (I − [mm] A)^{−1} [/mm] nichtnegativ sind."

Irgendwie verstehe ich die letzte Aussage nicht: Wieso müssen alle Koeffizienten von (I − [mm] A)^{−1} [/mm] nichtnegativ sein, damit alle [mm] x_{j} [/mm] >= 0 sind?
Was ist, wenn gilt:

(I − [mm] A)^{−1} [/mm] := [mm] \pmat{ 2 & -1 \\ 1 & 1 } [/mm]
b := [mm] \vektor{1 \\ 1} [/mm]

... dann ist x = [mm] \vektor{1 \\ 2} [/mm]

Also sind alle [mm] x_{j} [/mm] >= 0 obwohl nicht "alle Koeffizienten der inversen Matrix (I − [mm] A)^{−1} [/mm] nichtnegativ sind."

Kann mir da einer helfen?

Gruß und Danke,

Martin

        
Bezug
Analyse nach Leontjef: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Do 22.03.2018
Autor: Gonozal_IX

Hiho,

du hast völlig recht,  dass es zu einzelnen b durchaus Matrizen geben kann, die auch negative Einträge haben. Das war aber nicht die Aussage des Textes. Dort soll sichergestellt werden, dass für beliebige Vektoren b mit nichtnegativen Einträgen ein Lösungsvektor x mit nichtnegativen Einträgen herauskommt.

Oder anders formuliert: für alle b mit nichtnegativen Einträgen.

Und da kann man eben recht schnell zeigen, dass dann auch alle Koeffizienten der invertierten Matrix nichtnegativ sein müssen.

Gruß
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]