Analytische Funktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Da bin ich nochmal)
Also: erstmal zum Einstieg: [mm] O(U)={f:U\to\IC} [/mm] für eine gegebene offene Menge [mm] U\not= \emptyset [/mm] bezeichnet die Menge aller auf U analytischen Funktionen und eine Funktion f:U [mm] \to \IC [/mm] heißt ja analytisch, wenn f sich in jedem Punkt [mm] z_{0} [/mm] von U in eine Potenzreihe entwickeln lässt.
Jetzt meine Aufgabe:
zz: Es gibt kein f [mm] \in [/mm] O(D(0,1)) mit [mm] f(\bruch{1}{n})=\bruch{(-1)^{n}}{n} [/mm] für alle n [mm] \in \IN
[/mm]
Nun, also D(0,1) ist ja die offene Kreisscheibe um 0 mit Radius 1. und ich denke auch, da es ja keins geben soll für alle n, dass man wohl einen Beweis mit Widerspruch führen könnte, also Annahme: Es gibt ein f......für alle n.
aber ich schnall iregndwie nicht so ganz, wie ich mit den Analytischen Funktionen arbeiten soll...
Genauso seltsam finde ich den Aufgabentyp: man bestimme alle f [mm] \in [/mm] O(D(0,1)) mit f(1/n)=1/(2n+1) für alle n [mm] \in \IN [/mm] (*)
Hätte da gern einen Ansatz, mit dem ich weiterarbeiten könnte!!
und zu (*): Was ändert sich, wenn ich anstatt O(D(0,1)) [mm] O(\IC) [/mm] habe?
Könnte es dann auch ein f geben, für das die Gleichung in (*) gilt?
Wäre für Ansätze und Hilfestellungen sehr dankbar! Mit besten Grüßen,
Sinchen
|
|
|
|
Hallo Sinchen,
ich habe es auch noch nicht ganz zu Ende gedacht, aber nehmen wir an, dass $f [mm] \in O\left(D(0, 1)\right)$. [/mm] Die Folge [mm] $\bruch{f(\bruch{1}{n})-f(\bruch{1}{n+1})}{\bruch{1}{n}-\bruch{1}{n+1}}$ [/mm] müsste doch gegen $f'(0)$ konvergieren. $f'$ ist nach Voraussetzung auch aus [mm] $O\left(D(0, 1)\right)$, [/mm] aber wenn ich das richtig sehe, kracht's bei 0 fürchterlich. Dann noch das Maximumprinzip nehmen und sich am Widerspruch zur Annahme, dass $f [mm] \in O\left(D(0, 1)\right)$ [/mm] sei erfreuen...
Ist aber nur die Skizze einer Idee und ungeprüft...
Auch über den Grenzwert des obigen Bruches ließe sich evtl. etwas über den qualitativen Verlauf von $g'$ um den Nullpunkt herum rausfinden?
Hoffentlich gehen diese Denkanstöße in die richtige Richtung...
Viel Erfolg,
Peter
|
|
|
|