www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenAnalytische Geometrie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Analytische Geometrie
Analytische Geometrie < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Geometrie: Ebene und Geraden
Status: (Frage) beantwortet Status 
Datum: 23:22 Di 25.05.2010
Autor: Toertel

Aufgabe
Gegeben sind die Ebenengleichungen

E: [mm] \vec{x}=\vektor{1 \\ 2 \\ 9} +r\vektor{-3 \\ 0 \\ 8} +s\vektor{4 \\ 5 \\ 2} [/mm]

[mm] [\vec{x}-\vektor{2 \\ 7 \\ 19}]*\vektor{40 \\ -38 \\ 15} [/mm]

E: 40x-38y+15z-99=0

a) Erläutern Sie die unterschiedlichen Darstellungsformen.

b) zeigen Sie, dass alle drei Gleichungen die selbe Ebene darstellen

c) Geben Sie die Gleichung einer zu E parallelen Ebene durch den Punkt P(1|2|3) an!

Wollen die bei a) einfach nur wissen, dass die erste Gleichung die Parameterform der Ebene ist, die zweite die Normalenform und die dritte die Koordinatenform?, oder meint ihr man muss auch mehr dazu erläutern? Bzw. erklären, dass die Ebene bei der Parameterform durch zwei Richtungsvektoren der Ebene definiert ist, die Normalenform durch einen Orthogonalen Vektor auf der Ebene und die Koordinatenform durch die Schnittpunkte mit den Koordinatenachsen ?


Bei b) und c) hänge ich komplett - liegt womöglich auch daran, dass a) bisher noch nicht ausreichend beantwortet ist.

Kann mir jemand bei den jeweiligen Ansätzen helfen ?

Gruß


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Analytische Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Di 25.05.2010
Autor: leduart

Hallo
Ja, ich denk, das musst du sagen, (es fehlt in deinem Text der Aufpunkt) wobei man die Koordinatenform auch einfach das ausgeführte skalarprodukt der Normalenform nennen kann.
in b) musst du dann wirklich zeigen, dass das dieselben Ebenen sind, also von 2 nach 3 einfach das Skalaprodukt ausführen, von 1 nach 2 oder 3 kannst du dir nen Weg aussuchen.
c) ist einfach, wenn du die Parameterform nimmst, einfach nen anderen Punkt und die gleichen Richtungsvektoren.
Gruss leduart

Bezug
                
Bezug
Analytische Geometrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:58 Di 25.05.2010
Autor: Toertel

Mit Aufpunkt meinst du also den Stützvektor, der für die ersten beiden Ebendarstellungen natürlich auch wichtig ist ?, oder was genau ist der Aufpunkt?

b) und c) kommen bei mir nicht an. Hast du ein Rechenbeispiel, was es mir vielleicht verständlicher macht?




Bezug
                        
Bezug
Analytische Geometrie: Antwort
Status: (Antwort) fertig Status 
Datum: 00:35 Mi 26.05.2010
Autor: rabilein1

Du musst wissen, wie du von der einen Form (z.B. Parameterform) in die andere kommst.

Beispiel:
4x + 2y + 3z = 12

Daraus ergeben sich die drei Punkte
[mm] P_{1} [/mm] (0/0/4) ,  [mm] P_{2} [/mm] (0/6/0) ,  [mm] P_{3} [/mm] (3/0/0)

Aus diesen Punkten kannst du die Ebene bilden:

E: [mm] \vektor{0 \\ 0\\4} [/mm] + s [mm] \vektor{0 \\ 6\\-4} [/mm] + t [mm] \vektor{3 \\ 0\\-4} [/mm]

[mm] P_{1} [/mm] wurde dabei festgelegt. Die Richtungsvektoren ergeben sich jeweils aus der Differenz.


Rückumwandlung:

Aus E: [mm] \vektor{0 \\ 0\\4} [/mm] + s [mm] \vektor{0 \\ 6\\-4} [/mm] + t [mm] \vektor{3 \\ 0\\-4} [/mm] ist die Form ax + by + cz = d gesucht

Dazu nimmt man drei Punkte, die sich aus s=0, t=0 / s=1, t=0 / s=0, t=1 ergeben:
[mm] P_{1} [/mm] (0/0/4) ,  [mm] P_{2} [/mm] (0/6/0) ,  [mm] P_{3} [/mm] (3/0/0)


Somit erhält man:

3a = d
6b = d
4c = d

Das sind 3 Gleichungen mit 4 Unbekannten. Somit kann eine Unbekannte willkürlich festgelegt werden.

Zum Bespiel: a = 4.  Dann ist d =12 ; b = 2  und  c = 3

Also:  4x + 2y + 3z = 12

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]