www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungAnalytische Geometrie mit Eben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Analytische Geometrie mit Eben
Analytische Geometrie mit Eben < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Geometrie mit Eben: Parameterdarstellung
Status: (Frage) beantwortet Status 
Datum: 17:12 Mi 19.01.2005
Autor: baerchen

Hallo Ihr,

ich komme mal wieder mit meinen Mathehausaufgaben nicht zu recht :(

Ich habe zwei Geraden.
g1: [mm] \overrightarrow{x} [/mm] =  [mm] \vektor{0 \\-1\\3} [/mm] +  [mm] \lambda [/mm] *  [mm] \vektor{1 \\-2\\-1} [/mm]
g2:  [mm] \overrightarrow{x} [/mm] =  [mm] \vektor{2 \\-5\\1} [/mm] +  [mm] \mu [/mm] *  [mm] \vektor{0 \\1\\3} [/mm]

Ich soll den Schnittpunkt ausrechnen, der ist bei mir (0/0/0). Dann soll ich die Parameterdarstellung der durch g1 und g2 bestimmten Ebene angeben. Und da weiß ich nun nicht weiter.
Dass ich die (0/0/0) nun als Stützvektor angebe ist mir klar, doch was nehme ich als Richtugnsvektor? Einen den ich schon habe oder kann ich den errechnen?

Über Hilfe würde ich mich freuen :)

Herzlichen Dank im voraus und liebe Grüße
Bärchen

        
Bezug
Analytische Geometrie mit Eben: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 Mi 19.01.2005
Autor: Marcel

Hallo baerchen,

> Hallo Ihr,
>  
> ich komme mal wieder mit meinen Mathehausaufgaben nicht zu
> recht :(
>  
> Ich habe zwei Geraden.
>  g1: [mm]\overrightarrow{x}[/mm] =  [mm]\vektor{0 \\-1\\3}[/mm] +  [mm]\lambda[/mm] * [mm]\vektor{1 \\-2\\-1} [/mm]
>  g2:  [mm]\overrightarrow{x}[/mm] =  [mm]\vektor{2 \\-5\\1}[/mm] +  [mm]\mu[/mm] *  [mm]\vektor{0 \\1\\3} [/mm]
>  
> Ich soll den Schnittpunkt ausrechnen, der ist bei mir
> (0/0/0).

[notok]

Das kann schon nicht stimmen, denn es gibt nur eine Möglichkeit, bei g1 in der ersten Komponente die 0 zu erzwingen; und zwar mit [mm] $\lambda=0$. [/mm] Für [mm] $\lambda=0$ [/mm] erhältst du aber bei g1 den Vektor:
[m]\overrightarrow{x}=\vektor{0 \\-1\\3}\not=\vektor{0 \\0\\0}[/m]
Mit anderen Worten:
[mm] $\vektor{0 \\0\\0}$ [/mm] liegt mit Sicherheit nicht auf g1, also kann das schon gar nicht der Schnittpunkt sein. Rechne am besten den Schnittpunkt nochmal nach; du hast ja 3 Gleichungen für zwei Variablen [mm] ($\lambda$ [/mm] und [mm] $\mu$). [/mm] Versuche mal, die zwei Variablen auszurechnen. Falls du sie hast, dann benutze die "ungenutzte" Gleichung als "Kontrollgleichung"...

>  Dann soll ich die Parameterdarstellung der durch
> g1 und g2 bestimmten Ebene angeben. Und da weiß ich nun
> nicht weiter.
> Dass ich die (0/0/0) nun als Stützvektor angebe ist mir
> klar, doch was nehme ich als Richtugnsvektor? Einen den ich
> schon habe oder kann ich den errechnen?

Wie gesagt, [mm] $\vektor{0 \\0\\0}$ [/mm] ist nicht der Stützvektor. Aber wenn du den Stützvektor [mm] $\overrightarrow{s}$ [/mm] berechnet hast (veranschauliche dir das mal, indem du z.B. als "Geraden" zwei Stifte in die Luft hälst, die sich kreuzen), dann kannst du [mm] $\overrightarrow{s}$ [/mm] als Stützvektor der Ebene nehmen und da die beiden Richtungsvektoren der Geraden offenbar linear unabhängig sind, nimmst du den Richtungsvektor von g1 als einen Richtungsvektor der Ebene und den Richtungsvektor von g2 als zweiten Richtungsvektor der Ebene.

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]