Andere Def. vom Diffquotient < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:05 Mo 24.06.2013 | Autor: | Herbart |
Hallo,
ich frage mich, ob man den Differentialquotienten auch anders schreiben darf und wenn ja für welche Funktionen.
Für mich wäre es praktischer den Diffquotienten für die h-Methode so zu schreiben:
[mm]\limes_{h\rightarrow 0}\bruch{f(x)-f(x-h)}{h}=f'(x)[/mm]
Darf man das?
Ich habe das ganze mal z.B. für [mm]f(x)=x^3[/mm] durchgespielt:
[mm]\limes_{h\rightarrow 0}\bruch{x^3-(x-h)^3}{h}=...=\limes_{h\rightarrow 0}\bruch{3hx^2-3h^2x+h^3}{h}=3x^2[/mm]
Kann man die obige schreibweise im Allgemeinen beweisen oder nur für gewisse Funktionen? Und wenn ja, für welche?
MfG Herbart
|
|
|
|
Hallo,
> Hallo,
>
> ich frage mich, ob man den Differentialquotienten auch
> anders schreiben darf und wenn ja für welche Funktionen.
> Für mich wäre es praktischer den Diffquotienten für die
> h-Methode so zu schreiben:
> [mm]\limes_{h\rightarrow 0}\bruch{f(x)-f(x-h)}{h}=f'(x)[/mm]
> Darf
> man das?
Ja, klar, das darf man tun. Man verschiebt das Steigungsdreieck der Sekante ja nur so, dass der als fest betrachtete Punkt an der rechten Seite liegt und nicht links, wie üblich.
> Ich habe das ganze mal z.B. für [mm]f(x)=x^3[/mm] durchgespielt:
> [mm]\limes_{h\rightarrow 0}\bruch{x^3-(x-h)^3}{h}=...=\limes_{h\rightarrow 0}\bruch{3hx^2-3h^2x+h^3}{h}=3x^2[/mm]
>
> Kann man die obige schreibweise im Allgemeinen beweisen
> oder nur für gewisse Funktionen? Und wenn ja, für
> welche?
Spiele das ganze mal so durch: Bilde den Differenzenquotienten nach h-Methode für die Stelle [mm] x_1=x_0-h, [/mm] dann hast du genau deine Version dastehen.
Gruß, Diophant
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:25 Mo 24.06.2013 | Autor: | Herbart |
Vielen Dank für deine Antwort. Du hast mir sehr geholfen!
Schönen Tag!
Herbart
|
|
|
|