www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationAnf.-Randwertproblem imhomogen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Fourier-Transformation" - Anf.-Randwertproblem imhomogen
Anf.-Randwertproblem imhomogen < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anf.-Randwertproblem imhomogen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Sa 06.12.2014
Autor: Teryosas

Aufgabe
Lösen Sie das folgende Anfangs-Randwertproblem für die inhomogene Wärmeleitungsgleichung:
[mm] \bruch{\partial u}{\partial t}(x,t)=\bruch{\partial^2 u}{\partial x^2}(x,t)+3tsin(2x) [/mm] für 0 [mm] \le x\le \pi [/mm] , [mm] t\ge [/mm] 0

[mm] u(0,t)=u(\pi [/mm] ,t)=0 für [mm] t\ge [/mm] 0                  u(x,0)=0 für [mm] 0\le x\le \pi [/mm]

hey,

also hier dürfte der allgemeine Ansatz sein:
[mm] u(x,t)=\summe_{n=1}^{\infty}b_{n}(t)sin(n\bruch{\pi}{L}x) [/mm] für [mm] 0\le x\le [/mm] L, [mm] t\ge [/mm] 0
da bei mir [mm] L=\pi [/mm] ist komme ich auf
[mm] u(x,t)=\summe_{n=1}^{\infty}b_{n}(t)sin(n\bruch{\pi}{\pi}x)=\summe_{n=1}^{\infty}b_{n}(t)sin(n*1*x) [/mm] für [mm] 0\le x\le \pi, t\ge [/mm] 0

jetzt muss ich die  zeitabhängige Fourier-Entwicklung aufstellen um den zeitabhängigen Koeffizienten [mm] b_{n}(t) [/mm] zu bestimmen
[mm] f(x,t)=\summe_{n=1}^{\infty}f_{n}(t)sin(nx) [/mm] für [mm] 0\le x\le \pi, t\ge [/mm] 0

falls ich bis hierher richtig bin komme ich nicht weiter.
hier mal meine Vermutung:

[mm] \summe_{n=1}^{\infty}sin(nx)[(\bruch{nc\pi}{\pi})^2*b_{n}(t)+b_{n}'(t)-f_{n}(t)]=\summe_{n=1}^{\infty}sin(nx)[(\bruch{nc}{1})^2*b_{n}(t)+b_{n}'(t)-f_{n}(t)] [/mm] = 0
wenn ich nun nur die eckige Klammer betrachte:
[mm] \bruch{nc}{1}^2*b_{n}(t)+b_{n}'(t) [/mm] = [mm] f_{n}(t) [/mm]
Aber wie komme ich jetzt auf die Koeffizienten [mm] b_{1}(t), b_{2}(t)....??? [/mm]

        
Bezug
Anf.-Randwertproblem imhomogen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Sa 06.12.2014
Autor: MathePower

Hallo Teryosas,

> Lösen Sie das folgende Anfangs-Randwertproblem für die
> inhomogene Wärmeleitungsgleichung:
>  [mm]\bruch{\partial u}{\partial t}(x,t)=\bruch{\partial^2 u}{\partial x^2}(x,t)+3tsin(2x)[/mm]
> für 0 [mm]\le x\le \pi[/mm] , [mm]t\ge[/mm] 0
>  
> [mm]u(0,t)=u(\pi[/mm] ,t)=0 für [mm]t\ge[/mm] 0                  u(x,0)=0
> für [mm]0\le x\le \pi[/mm]
>  hey,
>  
> also hier dürfte der allgemeine Ansatz sein:
>  [mm]u(x,t)=\summe_{n=1}^{\infty}b_{n}(t)sin(n\bruch{\pi}{L}x)[/mm]
> für [mm]0\le x\le[/mm] L, [mm]t\ge[/mm] 0


Das kommt schlussendlich  für die homogene Lösung auch heraus.


>  da bei mir [mm]L=\pi[/mm] ist komme ich auf
> [mm]u(x,t)=\summe_{n=1}^{\infty}b_{n}(t)sin(n\bruch{\pi}{\pi}x)=\summe_{n=1}^{\infty}b_{n}(t)sin(n*1*x)[/mm]
> für [mm]0\le x\le \pi, t\ge[/mm] 0
>
> jetzt muss ich die  zeitabhängige Fourier-Entwicklung
> aufstellen um den zeitabhängigen Koeffizienten [mm]b_{n}(t)[/mm] zu
> bestimmen
>  [mm]f(x,t)=\summe_{n=1}^{\infty}f_{n}(t)sin(nx)[/mm] für [mm]0\le x\le \pi, t\ge[/mm]
> 0

>


Ja.

  

> falls ich bis hierher richtig bin komme ich nicht weiter.
>  hier mal meine Vermutung:
>  
> [mm]\summe_{n=1}^{\infty}sin(nx)[(\bruch{nc\pi}{\pi})^2*b_{n}(t)+b_{n}'(t)-f_{n}(t)]=\summe_{n=1}^{\infty}sin(nx)[(\bruch{nc}{1})^2*b_{n}(t)+b_{n}'(t)-f_{n}(t)][/mm]
> = 0


Hast Du hier etwa Variation der Konstanten angewendet?


>  wenn ich nun nur die eckige Klammer betrachte:
>  [mm]\bruch{nc}{1}^2*b_{n}(t)+b_{n}'(t)[/mm] = [mm]f_{n}(t)[/mm]
>  Aber wie komme ich jetzt auf die Koeffizienten [mm]b_{1}(t), b_{2}(t)....???[/mm]
>  


Da wird Dir nicht anderes übrigbleiben,
als die entstandene DGL zu lösen.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]